Применение na. Натрий применение

ОПРЕДЕЛЕНИЕ

Натрий - одиннадцатый элемент Периодической таблицы. Обозначение - Na от латинского «natrium». Расположен в третьем периоде, IА группе. Относится к металлам. Заряд ядра равен 11.

Натрий - один из наиболее распространенных элементов на Земле. Он обнаружен в атмосфере Солнца и в межзвездном пространстве. Важнейшие минералы натрия: NaCl (галит), Na 2 SO 4 ×10H 2) (мирабелит), Na 3 AlF 6 (криолит), Na 2 B 4 O 7 ×10H 2) (бура) и др. Огромно содержание солей натрия в гидросфере (около 1,5×10 16 т).

Соединения натрия входят в растительные и животные организмы в последнем случае главным образов в виде NaCl. В крови человека ионы Na + составляют 0,32%, в костях - 0,6%, в мышечной ткани - 0,6-1,5%.

В виде простого вещества натрий представляет собой серебристо-белый металл (рис.1). Он настолько мягок, что легко режется ножом. Вследствие легкой окисляемости на воздухе натрий хранят под слоем керосина.

Рис. 1. Натрий. Внешний вид.

Атомная и молекулярная масса натрия

ОПРЕДЕЛЕНИЕ

Относительной молекулярная масса вещества (M r) - это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (A r) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии натрия существует в виде одноатомных молекул Na, значения его атомной и молекулярной масс совпадают. Они равны 22,9898.

Изотопы натрия

Известно двадцать изотопов натрия с массовыми числами от 18-ти до 37-ми, из которых наиболее стабильным является 23 Na с периодом полураспада меньше минуты.

Ионы натрия

На внешнем энергетическом уровне атома натрия имеется один электрон, который является валентным:

1s 2 2s 2 2p 6 3s 1 .

В результате химического взаимодействия натрий отдает свой единственный валентный электрон, т.е. является его донором, и превращается в положительно заряженный ион:

Na 0 -1e → Na + .

Молекула и атом натрия

В свободном состоянии натрий существует в виде одноатомных молекул Na. Приведем некоторые свойства, характеризующие атом и молекулу натрия:

Сплавы натрия

Важнейшие области применения натрия - это атомная энергетика, металлургия, промышленность органического синтеза. В атомной энергетике натрий и его сплав с калием применяются в качестве жидкометаллических теплоносителей. Сплав натрия с калием, содержащий 77,2% (масс.) кадия, находится в жидком состоянии в широком интервале температур, имеет высокий коэффициент теплоотдачи и не взаимодействует с большинством конструкционных материалов ни при обычных, ни при повышенных температурах.

Натрий используется как добавка, упрочняющая свинцовые сплавы.

Со ртутью натрий образует твердый сплав - амальгаму натрия, которая иногда используется как более мягкий восстановитель вместо чистого металла.

Примеры решения задач

ПРИМЕР 1

Задание Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения:

Na 2 O → NaCl → NaOH → Na.

Ответ Чтобы получить из оксида натрия хлорид этого же металла необходимо растворить его в кислоте:

Na 2 O+ 2HCl→ 2NaCl + H 2 O.

Для получения гидроксида натрия из хлорида этого же металла необходимо растворить его в воде, однако, следует помнить, что гидролиз в этом случае не протекает:

NaCl+ H 2 O→ NaOH + HCl.

Получение натрия из соответствующего гидроксида возможно, если щелочь подвергнуть электролизу:

NaOH ↔ Na + + Cl — ;

K(-): Na + + e → Na 0:

A(+): 4OH — — 4e → 2H 2 O + O 2 .

Натрий - это химический элемент, относящийся к первой группе периодической системы элементов, созданной Д. И. Менделеевым.

Натрий имеет порядковый номер 11, его атомный вес составляет 22,99. Натрий настолько мягок, что режется ножом. Его плотность (при 20° С) составляет 0,968 г/см3. Имеет температуру плавления около 98° С; а температура кипения натрия составляет 883° С.

Натрий - реакционно-способный и очень активный элемент; при хранении на открытом воздухе он очень легко окисляется с образованием карбонат натрия и гидрата окиси натрия.

Натрий со многими металлами может образовывать сплавы, которые имеют важное техническое значение в науке и производстве. Натрий и его сплавы имеют широкое применение во многих отраслях промышленной сферы. В химической промышленности натрий используется для получения перекиси натрия, тетраэтилсвинца (через сплав Na - Pb), цианистого натрия, гидрида натрия, моющих средств и др.

В металлургической промышленности натрий применяют в качестве восстановителя при получении тория, урана, титана, циркония и других металлов из их фтористых соединений или хлоридов. Натрий в жидком виде, а также его сплавы с калием используются в атомной энергетике в качестве теплоносителя.

Неудивительно, что натрий является одним из наиболее распространенных в природе химических элементов. По разным оценкам, в земной коре его содержание достигает 2,27%. Даже а в живых организмах он содержится в количестве до 0,02%. Хоть натрий и относится к группе металлов, но в чистом виде он не встречается в природе из-за своей высокой химической активности. Чаще всего он встречается в виде хлорида NaCl (каменная соль, галит), а также нитрата NaNO3 (селитра), карбоната Na2CO3 NaHCO3 2H2O (трона), сульфата Na2SO4 10H2O (мирабилит), Na2B4O7 4H2O (кернит), тетрабората Na2B4O7 10 H2O (бура) и других солей. Естественно, что океанические воды содержат огромные запасы хлорида натрия.

В пищевой отрасли это весьма необходимая для приготовления пищи поваренная соль, в химической отрасли он используется для производства минеральных удобрений и антисептиков, а в легкой промышленности натрий применяют для обработки кожи. Также он широко применяется в металлургическом производстве, при изготовлении газоразрядных светильников, а в виде сплава с калием его используют в качестве хладагента.

Без использования его соединений (формиат натрия и кремнефтористый натрий) невозможно на сегодняшний день развитие современной строительной индустрии; поскольку они являются одновременно противоморозным средством и прекрасным пластификатором при производстве высококачественного бетона и различных изделий из него, то работы в строительстве могут проводиться при очень низких температурах.

Натрий часто используется как теплоноситель, сплав натрия с калием находит применение в атомной энергетике для работы ядерных установок. Как восстановитель, он применяется для получения тугоплавких металлов (циркония, титана и др.), в качестве катализатора он используется при получении синтетического каучука и в органическом синтезе. Очень широко применяются и другие соединения натрия:

    • гидроксид натрия NаОН - это один из наиболее важных производственных компонентов химической промышленности, который используется при очистке продуктов переработки нефти, при производстве искусственного волокна, в бумажной, текстильной, мыловаренной и других отраслях промышленности;
    • пероксид натрия Na2O2 - применяется для отбеливания тканей, шелка, шерсти и др.

Со всеми кислотами Натрий образует соли, которые часто используются в жизни человека и практически во всех отраслях промышленности:

    • бромид натрия NаВг - в фотографии и в медицине;
    • фторид натрия NаF - для обработки древесины, в сельском хозяйстве, в производстве эмалей и др.;
    • сода кальцинированная (Nа2СО3 карбонат натрия) и питьевая (NаНСОз бикарбонат натрия) являются основными продуктами химической промышленности;
    • дихромат натрия Na2Cr2O7 - используется в качестве дубильного вещества и сильного окислителя (хромовая смесь - раствор концентрированной серной кислоты и дихромата натрия - используются для мытья лабораторной посуды);
    • хлорид натрия NаСl (соль поваренная) - в пищевой промышленности, в технике, медицине, для производства едкого натра, соды и др.;
    • нитрат натрия NaNO3 (селитра натриевая) - азотное удобрение;
    • сульфат натрия Na2SO4 - незаменим в кожевенной, мыловаренной, стекольной, целлюлозно-бумажной, текстильной промышленности;
    • сульфит натрия Na2SO4 с тиосульфатом натрия Na2SO3 - применяются в медицине и фотографии и т.д.
    • силикат натрия NaSiO3 - это растворимое стекло;

На мировом рынке цена на натрий не высока. Такая ситуация имеет место благодаря весьма широкому распространению в природе натрия и его соединений, а также сравнительно недорогим способам его промышленного производства. Натрий в виде чистого металла промышленным способом получают из расплава гидроксида или хлорида натрия при пропускании через него большого электрического тока. На сегодня объемы мирового потребления натрия и его соединений составляют более 100 млн.тонн, и спрос на него с каждым годом возрастает. Трудно назвать отрасль промышленности, где не применяется натрий.

Стоит ли после всего этого удивляться не прекращающемуся росту производства натрия?

Заканчиваем наш рассказ об элементе № 11 словами Дмитрия Ивановича Менделеева, написанными много лет назад, но вдвойне справедливыми для наших дней: «Получение металлического натрия относится к важнейшим открытиям в химии не потому одному, что через то расширилось и стало более правильным понятие о простых телах, но потому особенно, что в натрии видны химические свойства, лишь слабо выраженные в других общеизвестных металлах».

Подробный рассказ о химических свойствах натрия опущен по той причине, что это один из немногих разделов химии, которые достаточно полно излагаются в школьных учебниках.

  • НАТРИЙ НА ПОДВОДНОЙ ЛОДКЕ. Na плавится при 98, а кипит только при 883°С. Следовательно, температурный интервал жидкого состояния этого элемента достаточно велик. Именно поэтому (и еще благодаря малому сечению захвата нейтронов) натрий стали использовать в ядерной энергетике как теплоноситель. В частности, американские атомные подводные лодки оснащены энергоустановками с натриевыми контурами. Тепло, выделяющееся в реакторе, нагревает жидкий натрий, который циркулирует между реактором и парогенератором. В парогенераторе натрий, охлаждаясь, испаряет воду, и полученный нар высокого давления вращает паровую турбину. Для тех же целей используют сплав натрия с калием.
  • НЕОРГАНИЧЕСКИЙ ФОТОСИНТЕЗ. Обычно при окислении натрия образуется окись состава Na 2 O. Однако если сжигать натрий в сухом воздухе при повышенной температуре, то вместо окиси образуется перекись Na 2 O 2 . Это вещество легко отдает свой «лишний» атом кислорода и обладает поэтому сильными окислительными свойствами. Одно время перекись натрия широко применяли для отбелки соломенных шляп. Сейчас удельный вес соломенных шляп в использовании перекиси натрия ничтожен; основные количества ее используются для отбелки бумаги и для регенерации воздуха на подводных лодках. При взаимодействии перекиси натрия с углекислым газом протекает процесс, обратный дыханию: 2Na 2 O 2 + 2CO 2 → 2Na 2 CO 3 + O 2 , т. е. углекислый газ связывается, а кислород выделяется. Совсем как в зеленом листе!
  • НАТРИЙ И ЗОЛОТО. К тому времени, как был открыт №11, алхимия была уже не в чести, и мысль превращать натрий в золото не будоражила умы естествоиспытателей. Однако сейчас ради получения золота расходуется очень много натрия. «Руду золотую» обрабатывают раствором цианистого натрия (а его получают из элементного натрия). При этом золото превращается в растворимое комплексное соединение, из которого его выделяют с помощью цинка. Золотодобытчики - среди основных потребителей элемента № 11. В промышленных масштабах цианистый Na получают при взаимодействии натрия, аммиака и кокса при температуре около 800°С.
  • НАТРИЕВЫЕ ПРОВОДА. Электропроводность натрия в три раза ниже, чем электропроводность меди . Но натрий в 9 раз легче! Выходит, что натриевые провода выгоднее медных. Конечно, тонкие провода из натрия не делают, но вот шины для больших токов целесообразно изготовлять именно из натрия. Эти шины представляют собой заваренные с торцов стальные трубы, внутри заполненные натрием. Такие шины дешевле медных.


  • НАТРИЙ В ВОДЕ. Каждый школьник знает, что произойдет, если бросить кусочек натрия в воду. Точнее, не в воду, а на воду, потому что натрий легче воды. Тепла, которое выделяется при реакции натрия с водой, достаточно, чтобы расплавить натрий. И вот бегает по воде натриевый шарик, подгоняемый выделяющимся водородом . Однако реакция натрия с водой - не только опасная забава; напротив она часто бывает полезной. Натрием надежно очищают от следов воды трансформаторные масла, спирты, эфиры и другие органические вещества, а с помощью амальгамы натрия (т. е. сплава натрия с ртутью) можно быстро определить содержание влаги во многих соединениях. Амальгама реагирует с водой намного спокойнее, чем сам натрий. Для определения влажности к пробе органического вещества добавляют определенное количество амальгамы натрия и по объему выделившегося водорода судят о содержании влаги.
  • НАТРИЕВЫЙ ПОЯС ЗЕМЛИ. Вполне естественно, что на Земле Na никогда не встречается в свободном состоянии - слишком активен этот металл. Но в верхних слоях атмосферы - на высоте около 80 км - обнаружен слой атомарного натрия. На такой высоте практически нет кислорода, паров воды и вообще ничего, с чем натрий мог бы вступить в реакцию. Спектральными методами натрий был обнаружен и в межзвездном пространстве.
  • ИЗОТОПЫ НАТРИЯ. Природный натрий состоит только из одного изотопа с массовым числом 23. Известны 13 радиоактивных изотопов этого элемента, причем два из них представляют значительный интерес для науки. Натрий-22, распадаясь, излучает позитроны - положительно заряженные частицы, масса которых равна массе электронов. Этот изотоп с периодом полураспада 2,58 года используют в качестве позитронного источника. А изотоп натрий-24 (его период полураспада около 15 часов) применяют в медицине для диагностики и для лечения некоторых форм лейкемии - тяжелого заболевания крови.

Как получают натрий

Современный электролизер для получения натрия - довольно внушительное сооружение, внешне напоминающее печь. Эта «печка» сложена из огнеупорного кирпича и снаружи окружена стальным кожухом. Снизу через дно электролизера введен графитовый анод, окруженный кольцеобразной сеткой - диафрагмой. Эта сетка не дает возможности натрию проникнуть в анодное пространство, где выделяется хлор . Иначе элемент №11 сгорел бы в хлоре. Анод, кстати, тоже кольцеобразный. Он сделан из стали. Обязательная принадлежность электролизера - два колпака. Один устанавливают над анодом для сбора хлора, другой - над катодом для отвода натрия.

В электролизере загружают смесь тщательно высушенных хлористого натрия и хлористого кальция. Такая смесь плавится при более низкой температуре, чем чистый хлористый натрий. Обычно электролиз ведут при температуре около 600°С.

На электроды подают постоянный ток напряжением около 6 в; на катоде происходит разряд ионов Na + и выделение металлического натрия. Натрий всплывает и отводится в специальный сборник (разумеется, без доступа воздуха). На аноде разряжаются ноны хлора Cl - и выделяется газообразный хлор - ценный побочный продукт натриевого производства.

Обычно электролизер работает под нагрузкой 25 - 30 тыс. А, при этом в сутки производится 400 - 500 кг натрия и 600 - 700 кг хлора.

«САМЫЙ МЕТАЛЛИЧЕСКИЙ МЕТАЛЛ». Так иногда называют натрий. Это не совсем справедливо: в менделеевской таблице нарастание металлических свойств происходит по мере продвижения справа налево и сверху вниз. Так что у аналогов натрия по группе - франция , рубидия , цезия , калия - металлические свойства выражены сильнее, чем у натрия. (Конечно, имеются в виду только химические свойства.) Но и у натрия есть полный комплекс «металлических» химических свойств. Он легко отдает свои валентные электроны (по одному на атом), всегда проявляет валентность 1+ , обладает ярко выраженными восстановительными свойствами. Гидроокись натрия NaOH - сильная щелочь. Все это объясняется строением атома натрия, на внешней оболочке которого один электрон, и с ним атом легко расстается.

Натрий (латинское Natrium, обозначается символом Na) - элемент с атомным номером 11 и атомным весом 22,98977. Является элементом главной подгруппы первой группы, третьего периода периодической системы химических элементов Дмитрия Ивановича Менделеева. Простое вещество натрий - мягкий, легкоплавкий (tпл 97,86 °С), пластичный, легкий (плотность 0,968 г/см3), щелочной металл серебристо-белого цвета.

Природный натрий состоит всего из одного изотопа с массовым числом 23. Всего в настоящее время известно 15 изотопов и 2 ядерных изомера. У большинства искусственно полученных радиоактивных изотопов период полураспада меньше минуты. Только два изотопа имеют относительно долгий период полураспада: излучающий позитроны 22Na с периодом полураспада 2,6 года, который используют в качестве источника позитронов и в научных исследованиях и 24Na с периодом полураспада 15 часов используемый в медицине для диагностики и для лечения некоторых форм лейкемии.

Натрий в виде различных соединений известен с древних времен. Хлорид натрия (NaCl) или поваренная соль - одно из важнейших жизненно необходимых соединений, считается, что оно стало известно человеку еще в неолите, то есть, получается, что человечество употребляет хлорид натрия более шести тысяч лет! В ветхом завете существует упоминание вещества под названием «нетер», оно использовалось в качестве моющего средства. Скорее всего - это сода, карбонат натрия, который содержится в водах солевых озер в Египте.

В XVIII веке химикам уже было известно большое количество соединений натрия, соли этого металла широко применялись в медицине и текстильной промышленности (при окраске тканей и дублении кож). Однако металлический натрий был получен лишь в 1807 году английским химиком Хэмфри Дэви.

Важнейшие области применения натрия - это атомная энергетика, металлургия, промышленность органического синтеза. В атомной энергетике натрий и его сплав с калием применяются в качестве жидкометаллических теплоносителей. В металлургии натрийметаллическим методом получают ряд тугоплавких металлов, восстанавливая натрием KOH, выделяют калий. Кроме того, натрий используют как добавку, которая упрочняет свинцовые сплавы. В промышленности органического синтеза натрий используется при получении многих веществ. Натрий выступает в роли катализатора при получении некоторых органических полимеров. Важнейшие соединения натрия - оксид натрия Na2O, пероксид натрия Na2O2 и гидроксид натрия NaOH. Пероксид натрия применяется при отбеливании тканей, для регенерации воздуха в изолированных помещениях. Гидроксид натрия – один из важнейших продуктов основной химической промышленности. В колоссальных количествах он потребляется для очистки продуктов переработки нефти. Кроме того, гидроксид натрия широко применяется в мыловаренной, бумажной, текстильной и других отраслях промышленности, а также при производстве искусственного волокна.

Натрий - один из важнейших элементов, участвующих в минеральном обмене животных и человека. В человеческом организме натрий в виде растворимых солей (хлорида, фосфата, бикарбоната) содержится в основном во внеклеточных жидкостях - плазме крови, лимфе, пищеварительных соках. Осмотическое давление плазмы крови поддерживается на необходимом уровне, прежде всего за счет хлорида натрия.

Симптомами нехватки натрия являются потеря веса, рвота, образование газов в желудочно-кишечном тракте, и нарушение усвоения аминокислот и моносахаридов. Продолжительный дефицит вызывает мышечные судороги и невралгию. Переизбыток натрия вызывает отек ног и лица, а также повышенное выделение калия с мочой.

Биологические свойства

Натрий относится к группе макроэлементов, которые совместно с микроэлементами играют важную роль в минеральном обмене животных и человека. Макроэлементы содержатся в организме в значительных количествах, составляя в среднем от 0,1 до 0,9 % массы тела. Содержание натрия в теле взрослого человека составляет 55-60 г на 70 кг веса. Главным образом элемент номер одиннадцать содержится во внеклеточных жидкостях: в крови - 160-240 мг, в плазме - 300-350 мг, в эритроцитах - 50-130 мг. Костная ткань содержит до 180 мг натрия, эмаль зубов гораздо богаче этим макроэлементом - 250 мг. В легких концентрируется до 250 мг, в сердце 185 мг натрия. Мышечная ткань содержит натрия около 75 мг.

Основная функция натрия в организме людей, животных и даже растений - поддержание вводно-солевого баланса в клетках, регулирование осмотического давления и кислотно-щелочного равновесия. По этой причине содержание натрия в клетках растений довольно высокое (около 0,01 % на сырую массу), натрий создает высокое осмотическое давление в клеточном соке и тем самым способствует извлечению воды из почвы. В организме человека и животных натрий отвечает за нормализацию нервно-мышечной деятельности (участвует в нормальном проведении нервных импульсов) и сохраняет необходимые минеральные вещества в крови в растворенном состоянии. Вообще роль натрия в регулировании обмена веществ гораздо шире, ведь этот элемент необходим для нормального роста и состояния организма. Натрий играет роль «курьера», доставляя различные вещества к каждой клетке, например, сахара в крови. Он препятствует возникновению теплового либо солнечного удара, обладает также ярко выраженным сосудорасширяющим действием.

Натрий активно взаимодействует с другими элементами, так совместно с хлором они предотвращают утечку жидкости из кровеносных сосудов в прилежащие ткани. Однако главным «напарником» натрия является калий, в сотрудничестве с которым, они выполняют большинство выше перечисленных функций. Оптимальная суточная доза натрия для детей составляет от 600 до 1 700 миллиграммов, для взрослых от 1 200 до 2 300 миллиграммов. В эквиваленте поваренной соли (самый популярный и доступный источник натрия) это соответствует 3-6 граммам в день (в 100 граммах пищевой соли содержится 40 грамм натрия). Суточная потребность в натрии главным образом зависит от количества солей, теряемых с потом, и может доходить до 10 грамм NaCl. Натрий содержится практически во всех продуктах (в значительном количестве в ржаном хлебе, куриных яйцах, твердом сыре, говядине и молоке), однако большую часть организм получает за счет поваренной соли. Усвоение одиннадцатого элемента происходит главным образом в желудке и тонкой кишке, витамин D способствует лучшему усвоению натрия. В тоже время, пища богатая белком и особо соленая может привести к затруднению всасывания. Концентрация ионов натрия в организме регулируется в основном гормоном коры надпочечников - альдостероном, почки либо удерживают, либо выделяют натрий, в зависимости от того злоупотребляет человек или недополучает натрий. По этой причине при нормальных внешних условиях и правильной работе почек не может наступить ни дефицит, ни профицит натрия. Недостаток этого элемента может возникнуть при ряде вегетарианских диет. Кроме того, обильные потери натрия с потом несут люди тяжелых физических профессий и спортсмены. Недостаток натрия возможен и при различных отравлениях, сопровождающихся обильным потоотделением, рвотой, диареей. Однако такой дисбаланс легко восполнить минеральной водой, с которой организм получает не только натрий, но и определенное количество других минеральных солей (калия, хлора и лития).

При недостатке натрия (гипонатриемия) возникают такие проявления, как потеря аппетита, снижение вкусовых ощущений, желудочные спазмы, тошнота, рвота, газообразование, как следствие всего этого - сильная потеря в весе. Продолжительный дефицит вызывает мышечные судороги и невралгию: пациент может испытывать трудность балансировки при ходьбе, головокружение и быструю утомляемость, возможно наступление шокового состояния. К симптомам дефицита натрия также причисляют проблемы с памятью, внезапные перемены настроения, депрессию.

Переизбыток натрия вызывает задержку воды в организме, как следствие - повышение плотности крови, следовательно, повышение артериального давления (гипертония), отеки и болезни сосудов. Кроме того, избыток натрия приводит к повышенному выделению калия с мочой. Максимальное количество соли, которое может быть переработано почками составляет примерно 20-30 граммов, большее количество уже опасно для жизни!

В медицине используется большое количество препаратов натрия, наиболее часто применяемые - сульфат натрия, хлорид (при кровопотерях, потерях жидкости, рвоте); тиосульфат Na2S2O3∙5H2O (противовоспалительное и противотоксическое средство); борат Na2B4О7∙10H2O (антисептическое средство); гидрокарбонат NaHCO3 (как отхаркивающее средство, а также для промываний и полосканий при ринитах, ларингитах).

Поваренная соль - незаменимая и ценная приправа к пище была известна еще в древнейшие времена. В наши дни хлорид натрия дешевый продукт совместно с углем, известняком и серой он входит в так называемую «большую четверку» минерального сырья, наиболее существенного для химической промышленности. А ведь были времена, когда соль приравнивалась по цене к золоту. Так, например, в древнем Риме легионерам часто платили жалование не деньгами, а солью, отсюда и произошло слово солдат. В Киевскую Русь соль доставляли из Прикарпатья, а также из соляных озер и лиманов Черного и Азовских морей. Добыча и доставка ее обходилась настолько дорого, что на торжественных пирах ее подавали на столы только знатных гостей, прочие же расходились «несолоно хлебавши». Даже после присоединения Астраханского царства с его соленосными озерами Прикаспия к Руси цена на соль ниже не стала, что вызвало недовольство самых бедных слоев населения, которое переросло в восстание, известное под названием Соляного Бунта (1648). Петр I в 1711 году ввел монополию на торговлю солью, как на стратегически важное сырье, исключительное право на торговлю солью для государства просуществовало до 1862 года. До сих пор сохранилась древняя традиция встречать гостей «хлебом да солью», что означало делиться самым дорогим, что есть в доме.

Всем хорошо известно выражение: «Чтобы узнать человека, нужно с ним пуд соли съесть», однако мало кто задумывался над смыслом данной фразы. Подсчитано, что в год человек потребляет до 8 килограмм хлорида натрия. Получается, что крылатое выражение, подразумевает всего лишь один год - ведь пуд соли (16 кг) вдвоем можно съесть именно за этот период.

Электропроводность натрия в три раза ниже, чем электропроводность меди. Однако натрий в девять раз легче, получается, что натриевые провода, если бы они существовали, стоили бы дешевле медных. Правда, существуют стальные шины, заполненные натрием, предназначенные для больших токов.

Подсчитано, что каменная соль в количестве, эквивалентном содержанию хлорида натрия в Мировом океане, занимала бы объем 19 млн куб. км (на 50 % больше, чем общий объем Североамериканского континента выше уровня моря). Призма такого объема с площадью основания 1 км2 может достичь Луны 47 раз! Солью, извлеченной из морских вод, можно было бы засыпать всю сушу земного шара слоем в 130 м! Сейчас суммарное производство хлорида натрия из морской воды достигло 6-7 млн т. в год, что составляет около трети общей мировой добычи.

При взаимодействии перекиси натрия с углекислым газом протекает процесс, обратный дыханию:

2Na2О2 + 2СО2 → 2Na2CО3 + О2

В ходе реакции углекислый газ связывается, а кислород выделяется. Данная реакция нашла применение на подводных лодках для регенерации воздуха.

Интересный факт установили канадские ученые. Они обнаружили, что у вспыльчивых и раздражительных людей натрий быстро выводится из организма. У спокойных и доброжелательных людей, а также у тех, кто испытывает положительные эмоции, например, у влюбленных, это вещество усваивается хорошо.

C помощью натрия на расстоянии 113 тыс. км от Земли 3 января 1959 года была создана искусственная комета вбрасыванием в мировое пространство натриевых паров с борта советского космического аппарата, летящего к Луне. Яркое свечение натриевой кометы позволило уточнить траекторию первого летательного аппарата, прошедшего по маршруту Земля - Луна.

Источниками, содержащими большое количество натрия, являются: очищенная морская соль, качественные соевые соусы, различные рассолы, квашеная капуста, мясные бульоны. В небольшом количестве одиннадцатый элемент присутствует в морской капусте, устрицах, крабах, свежей моркови и свекле, цикории, сельдереи и одуванчике.

История

Природные соединения натрия - поваренная соль NaCl и сода Na2CO3 - известны человеку с глубокой древности. Древние египтяне использовали природную соду, добываемую из вод содовых озер, для бальзамирования, отбеливания холста, при варке пищи, изготовлении красок и глазурей. Данное соединение египтяне называли neter, впрочем, этот термин относился не только к природной соде, но и к щелочи вообще, в том числе получаемой из золы растений. Об этом веществе, но уже под названием «nitron» упоминают и более поздние греческие (Аристотель, Диоскорид) и римские (Плутарх) источники. Древнеримский историк Плиний Старший писал, что в дельте Нила соду (он называет ее «nitrum») выделяли из речной воды, в виде крупных кусков она поступала в продажу. Имея большое количество примесей, в первую очередь угля, такая сода имела серый, а порой даже черный цвет. В арабской средневековой литературе фигурирует термин «natron», от которого постепенно в XVII-XVIII вв. образуется термин «натра», то есть основание, из которого можно получить поваренную соль. От «натра» произошло современное название элемента.

Современная аббревиатура «Na» и латинское слово «natrium» были впервые использованы в 1811 году академиком, основателем шведского общества врачей Йенсом Якобом Берцелиусом для обозначения природных минеральных солей, в состав которых входила сода. Этот новый термин сменил первоначальное название «sodium», которое дал металлу английский химик Хэмфри Дэви первый получивший металлический натрий. Считается, что Дэви руководствовался латинским наименованием соды - «soda», хотя есть и другое предположение: в арабском языке есть слово «suda», обозначающее головную боль, в древние времена этот недуг врачевали именно содой. Стоит отметить, что в ряде стран Западной Европы (Великобритания, Франция, Италия), а также в Соединенных Штатах Америки натрий носит название sodium.

Несмотря на то, что соединения натрия были известны очень давно, получить металл в чистом виде удалось лишь в 1807 году, совершил это английский химик Хэмфри Дэви в результате электролиза слегка увлажненного твердого едкого натра NaOH. Дело в том, что традиционными химическими методами получить натрий не могли - из-за высокой активности металла, способ же Дэви опережал научную мысль и технические разработки того времени. В начале XIX века единственным реально применимым и подходящим источником тока был вольтов столб. Тот, которым воспользовался Дэви, имел 250 пар медных и цинковых пластин. Процесс, описанный Д.И. Менделеевым в одной из своих работ, был крайне сложен и энергоемок: «Соединяя с положительным (от меди или угля) полюсом кусок влажного (чтобы достичь гальванопроводности) едкого натра и выдолбив в нем углубление, в которое налита была ртуть, соединенная с отрицательным полюсом (катодом) сильного вольтова столба, Дэви заметил, что в ртути растворяется, при пропускании тока, особый металл, менее летучий, чем ртуть, и способный разлагать воду, вновь образуя едкий натр». Из-за большой энергоемкости щелочной способ получил промышленное распространение лишь в конце XIX века - с появлением более совершенных источников энергии, а в 1924 году американский инженер Г. Даунс принципиально изменил процесс электролитического получения натрия, заменив щелочь гораздо более дешевой поваренной солью.

Год спустя после открытия Дэви Жозеф Гей-Люссак и Луи Тенар получили натрий не электролизом, а при помощи реакции едкого натра с железом, нагретым до красного каления. Еще позднее Сент-Клер Девиль разработал метод, по которому натрий получали, восстанавливая соду углем в присутствии известняка.

Нахождение в природе

Натрий один из самых распространенных элементов - шестой по количественному содержанию в природе (из неметаллов больше только кислорода - 49,5 % и кремния - 25,3 %) и четвертый среди металлов (более распространены лишь железо - 5,08 %, алюминий - 7,5 % и кальций - 3,39 %). Его кларк (среднее содержание в земной коре) по разным оценкам составляет от 2,27 % по массе до 2,64 %. Большая часть этого элемента находится в составе различных алюмосиликатов. Натрий - типичный элемент верхней части земной коры, это легко прослеживается по степени содержания металла в различных породах. Так наибольшая концентрация натрия - 2,77 % по массе - в кислых изверженных породах (граниты и ряд других), в основных породах (базальты и подобные) среднее содержание одиннадцатого элемента составляет уже 1,94 % по массе. В ультраосновных породах мантии самое низкое содержание натрия - всего 0,57 %. Бедны одиннадцатым элементом и осадочные породы (глины и сланцы) - 0,66 % по массе, небогато натрием и большинство почв - среднее содержание порядка 0,63 %.

Вследствие своей высокой химической активности в природе натрий встречается исключительно в виде солей. Общее число известных минералов натрия более двухсот. Однако важнейшими, являющимися основными источниками получения этого щелочного металла и его соединений, считаются далеко не все. Стоит упомянуть галит (каменная соль) NaCl, мирабилит (глауберова соль) Na2SO4 10H2O, чилийская селитра NaNO3, криолит Na3, тинкал (бура) Na2B4O7∙10Н2О, трона NaHCO3∙Na2CO3∙2Н2О, тенардит Na2SO4, а также природные силикаты, например альбит Na, нефелин Na, содержащие помимо натрия и другие элементы. В результате изоморфизма Na+ и Ca2+, который обусловлен близостью их ионных радиусов, в магматических породах образуются натриево-кальциевые полевые шпаты (плагиоклазы).

Натрий - главный металлический элемент в морской воде, подсчитано, что в водах Мирового океана содержится 1,5 1016 тонн солей натрия (средняя концентрация растворимых солей в водах Мирового океана примерно 35 промилле, что составляет 3,5 % по массе, на долю натрия из них приходится 1,07 %). Столь высокая концентрация обусловлена так называемым круговоротом натрия в природе. Дело в том, что этот щелочной металл довольно слабо задерживается на континентах и активно переносится водами рек в моря и океаны. При испарении в прибрежно-морских лагунах, а также в континентальных озерах степей и пустынь осаждаются соли натрия, формирующие толщи соленосных пород. Подобного рода отложения солей натрия в сравнительно чистом виде существуют на всех континентах, как результат испарения древних морей. Эти процессы происходят и в наше время, примером могут служить озера Солт-Лейк, расположенное в штате Юта (США), Баскунчак (Россия, Ахтубинский район), соленые озера Алтайского края (Россия), а также Мертвое море и прочие подобные места.

Каменная соль образует обширные подземные месторождения (нередко в сотни метров толщиной), которые содержат более 90 % NaCl. Типичное Чеширское соляное месторождение (главный источник хлорида натрия в Великобритании) занимает площадь 60 на 24 км и имеет толщину соляного пласта около 400 м. Одно это месторождение оценивается более чем в 1011 т.

Кроме того, натрий - важный биоэлемент, он содержится в относительно больших количествах в живых организмах (в среднем 0,02 %, главным образом в виде NaCl), причем в животных его больше, чем в растениях. Наличие натрия установлено в атмосфере Солнца и межзвездном пространстве. В верхних слоях атмосферы (на высоте около 80 километров) обнаружен слой атомарного натрия. Дело в том, что на такой высоте практически полностью отсутствуют кислород, водяные пары и прочие вещества, с которыми мог бы взаимодействовать натрий.

Применение

Металлический натрий и его соединения довольно широко используются в различных отраслях промышленности. Благодаря своей высокой реакционной способности этот щелочной металл используется в металлургии в качестве восстановителя для получения методом металлотермии таких металлов, как ниобий, титан, гафний, цирконий. Еще в первой половине XIX века натрий применяли для выделения алюминия (из хлористого алюминия), в наши дни одиннадцатый элемент и его соли по-прежнему используется в качестве модификатора при производстве некоторых сортов литейных алюминиевых сплавов. Также натрий используется в сплаве на основе свинца (0,58 % Na), который применяется при изготовлении осевых подшипников железнодорожных вагонов, щелочной металл в этом сплаве является упрочняющим элементом. Натрий и его сплавы с калием - жидкие теплоносители в ядерных реакторах - ведь оба элемента имеют малые сечения поглощения тепловых нейтронов (для Na 0,49 барн). Кроме того, эти сплавы отличаются высокими температурами кипения и коэффициентами теплопередачи и не взаимодействуют с конструкционными материалами при высоких температурах, развиваемых в энергетических ядерных реакторах, таким образом, не влияя на ход цепной реакции.

Однако не только атомная энергетика использует натрий в качестве переносчика тепла - элемент №11 широко применяется как теплоноситель для процессов, требующих равномерного обогрева в интервале температур от 450 до 650 °C - в клапанах авиационных двигателей, в выпускных клапанах грузовиков, в машинах для литья под давлением. Сплав натрия, калия и цезия (Na 12 %, K 47 %, Cs 41 %) имеет рекордно низкую температуру плавления (всего 78 °C), по этой причине он был предложен в качестве рабочего тела ионных ракетных двигателей. В химической промышленности натрий применяют при производстве цианистых солей, синтетических моющих средств (детергенидов), фармацевтических препаратов. В производстве искусственного каучука натрий играет роль катализатора, соединяющего молекулы бутадиена в продукт, не уступающий по свойствам лучшим сортам естественного каучука. Соединение NaPb (10 % Na по массе) применяется в производстве тетраэтилсвинца - наиболее эффективного антидетонатора. Пары натрия используют для наполнения газоразрядных ламп высокого и низкого давления (НЛВД и НЛНД). Натриевая лампа наполнена неоном и содержит небольшое количество металлического натрия, при включении такой лампы разряд начинается в неоне. Тепло, выделяющееся при разряде, испаряет натрий, и, спустя некоторое время, красный свет неона сменяется желтым свечением натрия. Натриевые лампы являются мощными источниками света с высоким КПД (в лабораторных условиях до 70 %). Высокая экономичность натриевых ламп дала возможность использовать их для освещения автострад, вокзалов, пристаней и других масштабных объектов. Так, лампы НЛВД типа ДНаТ (Дуговая Натриевая Трубчатая), дающие ярко-желтый свет очень широко применяются в уличном освещении, срок службы таких ламп составляет 12-24 тысяч часов. Кроме того, существуют лампы ДНаС, ДНаМТ (Дуговая Натриевая Матовая), ДНаЗ (Дуговая Натриевая Зеркальная) и ДНаТБР (Дуговая Натриевая Трубчатая Без Ртути). Натрий используется в производстве весьма энергоёмких натриево-серных аккумуляторов. В органическом синтезе натрий используется в реакциях восстановления, конденсации, полимеризации и других. Изредка металлический натрий применяется в качестве материала для электрических проводов, предназначенных для очень больших токов.

Не менее широко используются и многочисленные соединения натрия: поваренная соль NaCl используется в пищевой промышленности; гидроксид натрия NaOH (каустическая сода) используется в мыловаренной промышленности, при производстве красок, в целлюлозно-бумажной и нефтяной промышленности, при производстве искусственного волокна, а также в качестве электролита. Сода - карбонат натрия Na2CO3 применяется в стекольной, целлюлозно-бумажной, пищевой, текстильной, нефтяной и других отраслях промышленности. В сельском хозяйстве в качестве удобрения широко используется натриевая соль азотной кислоты NaNO3, известная под названием чилийской селитры. Хлорат натрия NaClO3 применяется для уничтожения нежелательной растительности на железнодорожном полотне. Фосфат натрия Na3PO4 - компонент моющих средств, применяют в производстве стекол и красок, в пищевой промышленности, в фотографии. Азид натрия NaN3 применяется в качестве азотирующего средства в металлургии и при получении азида свинца. Цианид натрия NaCN применяется при гидрометаллургическом способе выщелачивания золота из горных пород, а также при нитроцементации стали и в гальванотехнике (серебрение, золочение). Силикаты mNa2O nSiO2 - компоненты шихты в производстве стекла, для получения алюмосиликатных катализаторов, жаростойких, кислотоупорных бетонов.

Производство

Как известно впервые металлический натрий был получен в 1807 году английским химиком Дэви путем электролиза едкого натра NaOH. С научной точки зрения выделение щелочных металлов - грандиозное открытие в области химии. Однако промышленность тех лет не могла оценить значимость данного события - во-первых, для производства натрия в промышленных масштабах в начале XIX века просто еще не существовало необходимых мощностей, во-вторых, никто не знал, где бы мог пригодиться мягкий металл, вспыхивающий при взаимодействии с водой. И если первую трудность в 1808 году решили Жозеф Гей-Люссак и Луи Тенар, получив натрий, не прибегая к энергоемкому электролизу, при помощи реакции едкого натра с железом, нагретым до красного каления, то вторую задачу - область применения - удалось решить лишь в 1824 году, когда с помощью натрия был выделен алюминий. Во второй половине XIX века Сент-Клер Девиль разработал новый метод получения металлического натрия – путем восстановления соды углем в присутствии известняка:

Na2CO3 + 2C → 2Na + 3CO

В 1886 году этот метод был усовершенствован. Однако уже в 1890 году в промышленность был внедрен электролитический способ получения натрия. Таким образом, идея Хэмфри Дэви в промышленных масштабах была реализована лишь спустя 80 лет! Все поиски и изыскания закончились возвращением к первоначальному способу. В 1924 году американский инженер Даунс удешевил процесс электролитического получения натрия, заменив щелочь гораздо более дешевой поваренной солью. Данная модернизация повлияла на производство металлического натрия, которое выросло с 6 тысяч тонн (1913 год) до 180 тысяч тонн (1966 год). Метод Даунса лег в основу современного способа получения металлического натрия.

Сейчас основной промышленный метод получения металлического натрия - электролиз расплава поваренной соли NaCl (побочным продуктом процесса является хлор) с добавками КСl, NaF или СаСl2, которые понижают температуру плавления соли до 575-585 °C. В противном случае электролиз чистого хлорида натрия привел бы к большим потерям металла от испарения, так как температуры плавления NaCl (801 °C) и кипения металлического натрия (882,9 °C) очень близки. Процесс происходит в стальном электролизере с диафрагмой. Современный электролизер для получения натрия - внушительное сооружение, напоминающее печь. Агрегат сложен из огнеупорного кирпича, который снаружи окружен стальным кожухом. Сквозь днище электролизера введен графитовый анод, окруженный кольцеобразной сеткой - диафрагмой, которая препятствует проникновению натрия в анодное пространство, где осаждается хлор. В противном случае натрий просто сгорел бы в хлоре.

Кольцеобразный катод изготовляется из железа или меди. Над катодом и анодом устанавливаются колпаки для отвода натрия и хлора. В электролизер загружают смесь тщательно высушенных хлористого натрия и хлористого кальция, мы уже знаем, что подобная смесь плавится при более низкой температуре, чем чистый хлористый натрий. Обычно процесс идет при температуре около 600 °C. На электроды подают постоянный ток напряжением около 6 B, при этом на катоде происходит разряд ионов Na+ и выделение металлического натрия, который всплывает и отводится в специальный сборник. Естественно процесс идет без доступа воздуха. На аноде разряжаются ионы хлора Сl– и выделяется газообразный хлор - ценный побочный продукт натриевого производства. За сутки работы электролизера производится 400-500 кг натрия и 600-700 кг хлора. Получаемый таким образом металл очищают от примесей (хлоридов, оксидов и прочих) добавлением в расплавленный натрий смеси NaOH + Na2CO3 + NaCl или Na2O2; обработкой расплава металлическим литием, титаном или сплавом титан-цирконий, низшими хлоридами TiCl3, TiCl2; вакуумной дистилляцией.

Физические свойства

Хэмфри Дэви не только первым получил металлический натрий, но и первым исследовал его свойства. Докладывая в Лондоне об открытии новых элементов (калия и натрия), химик впервые продемонстрировал ученой аудитории образцы новых металлов. Кусочек металлического натрия английский химик хранил под слоем керосина, с которым натрий не взаимодействовал и не окислялся в его среде, сохраняя свой блестящий серебристый цвет. Кроме того, натрий (плотность при 20 °C равна 0,968 г/см3) тяжелее керосина (плотность при 20 °C при различной степени очистки составляет 0,78-0,85 г/см3) и не всплывает на его поверхности, следовательно, не подвергается окислению кислородом и углекислым газом. Обычной демонстрацией сосуда с образцом нового металла Дэви не ограничился, достав натрий из керосина, химик бросил образец в бадью с водой. К всеобщему удивлению, металл не утонул, а начал активно двигаться по поверхности воды, плавясь на небольшие блестящие капельки, часть которых воспламенялась. Дело в том, что плотность воды (при 20 °C равна 0,998 г/см3) больше плотности этого щелочного металла, по этой причине натрий не тонет в воде, а плавает в ней, активно с ней взаимодействуя. Публика была поражена подобной «презентацией» нового элемента.

Что же мы сейчас можем рассказать о физических свойствах натрия? Одиннадцатый элемент периодической системы - мягкий (легко режется ножом, поддается прессованию и прокатке), легкий блестящий серебристо-белый металл, быстро тускнеющий на воздухе. Тонкие слои натрия имеют фиолетовый оттенок, под давлением металл становится прозрачным и красным, как рубин. При обычной температуре натрий кристаллизуется в кубической решетке со следующими параметрами: а = 4,28 A, атомный радиус 1,86 A, ионный радиус Na+ 0,92 A. Потенциалы ионизации атома натрия (эВ) 5,138; 47,20; 71,8; электроотрицательность металла 0,9. Работа выхода электронов 2,35 эВ. Данная модификация устойчива при температуре выше -222 °C. Ниже этой температуры устойчива гексагональная модификация со следующими параметрами: а = 0,3767 нм, с = 0,6154 нм, z = 2.

Натрий - легкоплавкий металл, его температура плавления всего 97,86 °C. Получается, что этот металл мог бы плавиться в кипящей воде, если бы активно не взаимодействовал с ней. Причем при плавлении плотность натрия снижается на 2,5 %, однако происходит увеличение объема на ΔV = 27,82∙10-6 м3/кг. При повышении давления возрастает температура плавления металла, достигая 242° C при 3 ГПа и 335 °C при 8 ГПа. Температура кипения расплавленного натрия 883,15° С. Теплота испарения натрия при нормальном давлении = 3869 кДж/кг. Удельная теплоемкость одиннадцатого элемента (при комнатной температуре) 1,23 103 дж/(кг К) или 0,295 кал/(г град); коэффициент теплопроводности натрия равен 1,32 102 вт/(м К) или 0,317 кал/(см сек град). Температурный коэффициент линейного расширения для этого щелочного металла (при температуре 20 °C) составляет 7,1 10-5. Удельное электрическое сопротивление натрия (при 0 °C) равно 4,3 10-8 ом м (4,3 10-6 ом см). При плавлении удельное электрическое сопротивление натрия возрастает в 1,451 раза. Натрий парамагнитен, его удельная магнитная восприимчивость +9,2 10-6. Твердость натрия по Бринеллю HB = 0,7 МПа. Модуль нормальной упругости при растяжении при комнатной температуре E = 5,3 ГПа. Сжимаемость натрия х = 15,99∙10-11 Па-1. Натрий весьма пластичный металл, легко деформируется на холоду. Давление истечения натрия, по данным Н. С. Курнакова и С. Ф. Жемчужного, находится в пределах 2,74-3,72 МПа в зависимости от диаметра выходного отверстия.

Химические свойства

В химических соединениях, включая гидриды, натрий проявляет степень окисления + 1. Одиннадцатый элемент относится к числу наиболее реакционноспособных металлов, поэтому в чистом виде в природе не встречается. Даже при комнатной температуре он активно реагирует с кислородом воздуха, водяными парами и углекислым газом, образуя на поверхности рыхлую корку из смеси пероксида, гидроксида и карбоната. По этой причине металлический натрий хранится под слоем обезвоженной жидкости (керосин, минеральное масло). Благородные газы незначительно растворяются в твердом и жидком натрии, при 200 °С натрий начинает поглощать водород, образуя весьма гигроскопичный гидрид NaH. С азотом этот щелочной металл реагирует крайне слабо в тлеющем разряде, образуя очень неустойчивое вещество - нитрид натрия:

6Na + N2 → 2Na3N

Нитрид натрия устойчив в сухом воздухе, но моментально разлагается водой или спиртом с образованием аммиака.

При непосредственном взаимодействии натрия с кислородом в зависимости от условий образуется оксид Na2O (при горении натрия в недостаточном количестве кислорода) или пероксид Na2O2 (при сжигании натрия на воздухе или в избытке кислорода). Оксид натрия проявляет ярко выраженные основные свойства, бурно реагирует с водой с образованием гидроксида NaОН - сильного основания:

Na2O + H2O → 2NaOH

Гидроксид натрия - хорошо растворимая в воде щелочь (в 100 г воды при 20 °C растворяется 108 г NaOH) в виде твердых белых гигроскопичных кристаллов, разъедает кожу, ткани, бумагу и другие органические вещества. При растворении в воде выделяет большое количество тепла. На воздухе гидроксид натрия активно поглащает углекислый газ и превращается в карбонат натрия:

2NаОН + СO2 → Na2СО3 + Н2О

По этой причине гидроксид натрия необходимо хранить в герметичных сосудах. В промышленности NaOH получается путем электролиза водных растворов NaCl или Na2CO3 c применением ионообменных мембран и диафрагм:

2NaCl + 2H2O → 2NaOH + Cl2 + H2

Пероксид натрия представляет собой бледно-желтый порошок, который плавится без разложения, Na2O2 является очень сильным окислителем. Большинство органических веществ при соприкосновении с ним воспламеняются. При взаимодействии Na2O2 с углекислым газом выделяется кислород:

2Na2О2 + 2СО2 → 2Na2CО3 + О2

Металлический натрий, как и его окислы, активно взаимодействует с водой с образованием гидроксида NaOH и выделением водорода, при большой поверхности контакта, реакция протекает с взрывом. Со спиртами натрий взаимодействует намного спокойнее, чем с водой, в результате получается алкоголят натрия. Так, реагируя с этанолом, натрий дает этанолят натрия С2Н5ОNa:

2Na + 2C2H5OH → 2C2H5ONa + H2

Натрий растворяется почти во всех кислотах с образованием большого количества солей:

2Nа + 2НСl → 2NаСl + Н2

2Na + 2Н2SO4 → SO2 + Na2SO4 + 2H2O

В атмосфере фтора и хлора натрий самовоспламеняется, с бромом реагирует при нагревании, с йодом прямого взаимодействия не возникает. С серой реагирует бурно, при растирании в ступке, образуя сульфиды переменного состава. Сульфид натрия Na2S получают путем восстановления сульфата натрия углеродом. Очень распространенное соединение натрия с серой и кислородом - так называемая глауберова соль Na2SO4∙10Н2О. Кроме серы активно реагирует с селеном и теллуром с образованием халькогенидов составов Na2X, NaX, NaX2, Na2X5.

Натрий растворяется в жидком аммиаке (34,6 г на 100 г NH3 при 0 °C) с образованием аммиачных комплексов (раствор синего цвета, обладающий металлической проводимостью). При испарении аммиака остается исходный металл, при длительном хранении раствора он постепенно обесцвечивается за счет реакции металла с аммиаком с образованием амида NaNH2 или имида Na2NH и выделением водорода. При пропускании газообразного аммиака через расплавленный натрий при 300-350 °C образуется натрийамин NaNH2 - бесцветное кристаллическое вещество, легко разлагаемое водой.

При 800-900 °С газообразный натрий с углеродом образует карбид (ацетиленид) Na2C2. С графитом натрий образует соединения включения.

Натрий образует ряд интерметаллидов - с серебром, золотом, оловом, свинцом, висмутом, цезием, калием и другими металлами. Не образует соединений с барием, стронцием, магнием, литием, цинком и алюминием. С ртутью натрий образует амальгамы - интерметаллиды состава NaHg2, NaHg4, NaHg8, NaHg, Na3Hg2, Na5Hg2, Na3Hg. Значимы жидкие амальгамы (содержат менее 2,5 % по массе натрия), получаемые постепенным введением натрия в ртуть, находящуюся под слоем керосина или минерального масла.

Известно огромное количество натрийорганических соединений, схожих по химическим свойствам с литийорганическими соединениями, но превосходящих их по реакционной способности.

Содержание статьи

НАТРИЙ – (Natrium) Na, химический элемент 1-й (Ia) группы Периодической системы, относится к щелочным элементам. Атомный номер 11, относительная атомная масса 22,98977. В природе имеется один стабильный изотоп 23 Na. Известны шесть радиоактивных изотопов этого элемента, причем два из них представляют интерес для науки и медицины. Натрий-22 с периодом полураспада 2,58 года используют в качестве источника позитронов. Натрий-24 (его период полураспада около 15 часов) применяют в медицине для диагностики и для лечения некоторых форм лейкемии.

Степень окисления +1.

Соединения натрия известны с древних времен. Хлорид натрия – необходимейший компонент человеческой пищи. Cчитается, что человек начал употреблять его в неолите, т.е. около 5–7 тыс. лет назад.

В Ветхом завете упоминается некое вещество «нетер». Это вещество использовалось как моющее средство. Скорее всего, нетер – это сода, карбонат натрия, который образовывался в соленых египетских озерах с известковыми берегами. Об этом же веществе, но под названием «нитрон» писали позже греческие авторы Аристотель и Диоскорид, а древнеримский историк Плиний Старший, упоминая это же вещество, называл его уже «нитрум».

В 18 в. химикам было известно уже очень много различных соединений натрия. Соли натрия широко применялись в медицине, при выделке кож, при крашении тканей.

Металлический натрий получил впервые английский химик и физик Гемфри Дэви электролизом расплавленного гидроксида натрия (с использованием вольтова столба из 250 пар медных и цинковых пластин). Название «sodium», выбранное Дэви для этого элемента, отражает его происхождение из соды Na 2 CO 3 . Латинское и русское названия элемента произведены от арабского «натрун» (природная сода).

Распространение натрия в природе и его промышленное извлечение.

Натрий – седьмой из наиболее распространенных элементов и пятый из наиболее распространенных металлов (после алюминия, железа, кальция и магния). Его содержание в земной коре составляет 2,27%. Большая часть натрия находится в составе различных алюмосиликатов.

Огромные отложения солей натрия в сравнительно чистом виде существуют на всех континентах. Они являются результатом испарения древних морей. Этот процесс по-прежнему продолжается в озере Солт-Лейк (штат Юта), Мертвом море и других местах. Натрий встречается в виде хлорида NaCl (галит, каменная соль), а также карбоната Na 2 CO 3 ·NaHCO 3 ·2H 2 O (трона), нитрата NaNO 3 (селитра), сульфата Na 2 SO 4 ·10H 2 O (мирабилит), тетрабората Na 2 B 4 O 7 ·10 H 2 O (бура) и Na 2 B 4 O 7 ·4H 2 O (кернит) и других солей.

Неиссякаемые запасы хлорида натрия есть в природных рассолах и океанических водах (около 30 кг м –3). Подсчитано, что каменная соль в количестве, эквивалентном содержанию хлорида натрия в Мировом океане, занимала бы объем 19 млн. куб. км (на 50% больше, чем общий объем Североамериканского континента выше уровня моря). Призма такого объема с площадью основания 1 кв. км может достичь Луны 47 раз.

Сейчас суммарное производство хлорида натрия из морской воды достигло 6–7 млн. т в год, что составляет около трети общей мировой добычи.

В живом веществе в среднем содержится 0,02% натрия; в животных его больше, чем в растениях.

Характеристика простого вещества и промышленное получение металлического натрия.

Натрий – серебристо-белый металл, в тонких слоях с фиолетовым оттенком, пластичен, даже мягок (легко режется ножом), свежий срез натрия блестит. Величины электропроводности и теплопроводности натрия достаточно высоки, плотность равна 0,96842 г/см 3 (при 19,7° С), температура плавления 97,86° С, температура кипения 883,15° С.

У тройного сплава, содержащего 12% натрия, 47% калия и 41% цезия, – самая низкая температура плавления для металлических систем, равная –78° С.

Натрий и его соединения окрашивают пламя в ярко-желтый цвет. Двойная линия в спектре натрия отвечает переходу 3s 1–3p 1 в атомах элемента.

Химическая активность натрия высока. На воздухе он быстро покрывается пленкой из смеси пероксида, гидроксида и карбоната. В кислороде, фторе и хлоре натрий горит. При сжигании металла на воздухе образуется пероксид Na 2 O 2 (с примесью оксида Na 2 O).

С серой натрий реагирует уже при растирании в ступке, серную кислоту восстанавливает до серы или даже до сульфида. Твердый диоксид углерода («сухой лед») при контакте с натрием взрывается (углекислотные огнетушители для тушения горящего натрия применять нельзя!). С азотом реакция идет только в электрическом разряде. Не взаимодействует натрий лишь с инертными газами.

Натрий активно реагирует с водой:

2Na + 2H 2 O = 2NaOH + H 2

Тепла, которое выделяется при реакции, достаточно, чтобы расплавить металл. Поэтому, если маленький кусочек натрия бросить в воду, он за счет теплового эффекта реакции плавится и капелька металла, который легче воды, «бегает» по поверхности воды, подгоняемая реактивной силой выделяющегося водорода. Со спиртами натрий взаимодействует намного спокойнее, чем с водой:

2Na + 2C 2 H 5 OH = 2C 2 H 5 ONa + H 2

Натрий легко растворяется в жидком аммиаке с образованием ярко-голубых метастабильных растворов с необычными свойствами. При –33,8° С в 1000 г аммиака растворяется до 246 г металлического натрия. Разбавленные растворы имеют синий цвет, концентрированные – цвет бронзы. Они могут храниться около недели. Установлено, что в среде жидкого аммиака натрий ионизуется:

Na Na + + e –

Константа равновесия этой реакции равна 9,9·10 –3 . Уходящий электрон сольватируется молекулами аммиака и образует комплекс – . Полученные растворы обладают металлической электропроводностью. При испарении аммиака остается исходный металл. При длительном хранении раствора он постепенно обесцвечивается за счет реакции металла с аммиаком с образованием амида NaNH 2 или имида Na 2 NH и выделением водорода.

Хранят натрий под слоем обезвоженной жидкости (керосин, минеральное масло), перевозят только в запаянных металлических сосудах.

Электролитический способ промышленного получения натрия был разработан в 1890. Электролизу подвергали расплав едкого натра, как в опытах Дэви, но с использованием более совершенных источников энергии, чем вольтов столб. В этом процессе наряду с натрием выделяется кислород:

анод (никелевый): 4OH – – 4e – = O 2 + 2H 2 O.

При электролизе чистого хлорида натрия возникают серьезные проблемы, связанные, во-первых, с близкими температурой плавления хлорида натрия и температурой кипения натрия и, во-вторых, с высокой растворимостью натрия в жидком хлориде натрия. Добавление к хлориду натрия хлорида калия, фторида натрия, хлорида кальция позволяет снизить температуру расплава до 600° С. Производство натрия электролизом расплавленной эвтектической смеси (сплав двух веществ с самой низкой температурой плавления) 40% NaCl и 60% CaCl 2 при ~580° С в ячейке, разработанной американским инженером Г.Даунсом, было начато в 1921 Дюпоном вблизи электростанции у Ниагарского водопада.

На электродах протекают следующие процессы:

катод (железный): Na + + e – = Na

Ca 2+ + 2e – = Ca

анод (графитовый): 2Cl – – 2e – = Cl 2 .

Металлические натрий и кальций образуются на цилиндрическом стальном катоде и поднимаются с помощью охлаждаемой трубки, в которой кальций затвердевает и падает обратно в расплав. Хлор, образующийся на центральном графитовом аноде, собирается под никелевым сводом и затем очищается.

Сейчас объем производства металлического натрия составляет несколько тысяч тонн в год.

Промышленное использование металлического натрия связано с его сильными восстановительными свойствами. Долгое время большая часть производимого металла использовалась для получения тетраэтилсвинца PbEt 4 и тетраметилсвинца PbMe 4 (антидетонаторов для бензина) реакцией алкилхлоридов со сплавом натрия и свинца при высоком давлении. Сейчас это производство быстро сокращается из-за загрязнения окружающей среды.

Еще одна область применения – производство титана, циркония и других металлов восстановлением их хлоридов. Меньшие количества натрия используются для получения соединений, таких как гидрид, пероксид и алкоголяты.

Диспергированный натрий является ценным катализатором при производстве резины и эластомеров.

Растет применение расплавленного натрия в качестве теплообменной жидкости в ядерных реакторах на быстрых нейтронах. Низкая температура плавления натрия, низкая вязкость, малое сечение поглощения нейтронов в сочетании с чрезвычайно высокой теплоемкостью и теплопроводностью делает его (и его сплавы с калием) незаменимым материалом для этих целей.

Натрием надежно очищают трансформаторные масла, эфиры и другие органические вещества от следов воды, а с помощью амальгамы натрия можно быстро определить содержание влаги во многих соединениях.

Соединения натрия.

Натрий образует полный набор соединений со всеми обычными анионами. Считается, что в таких соединениях происходит практически полное разделение заряда между катионной и анионной частями кристаллической решетки.

Оксид натрия Na 2 O синтезируют реакцией Na 2 O 2 , NaOH, а предпочтительнее всего NaNO 2 , с металлическим натрием:

Na 2 O 2 + 2Na = 2Na 2 O

2NaOH + 2Na = 2Na 2 O + H 2

2NaNO 2 + 6Na = 4Na 2 O + N 2

В последней реакции натрий можно заменить азидом натрия NaN 3:

5NaN 3 + NaNO 2 = 3Na 2 O + 8N 2

Хранить оксид натрия лучше всего в безводном бензине. Он служит реактивом для различных синтезов.

Пероксид натрия Na 2 O 2 в виде бледно-желтого порошка образуется при окислении натрия. При этом в условиях ограниченной подачи сухого кислорода (воздуха) сначала образуется оксид Na 2 O, который затем превращается в пероксид Na 2 O 2 . В отсутствие кислорода пероксид натрия термически устойчив до ~675° C.

Пероксид натрия широко используется в промышленности как отбеливатель для волокон, бумажной пульпы, шерсти и т.д. Он является сильным окислителем: взрывается в смеси с порошком алюминия или древесным углем, реагирует с серой (при этом раскаляется), воспламеняет многие органические жидкости. Пероксид натрия при взаимодействии с монооксидом углерода образует карбонат. В реакции пероксида натрия с диоксидом углерода выделяется кислород:

2Na 2 O 2 + 2CO 2 = 2Na 2 CO 3 + O 2

Эта реакция имеет важное практическое применение в дыхательных аппаратах для подводников и пожарных.

Надпероксид натрия NaO 2 получают при медленном нагревании пероксида натрия при 200–450° С под давлением кислорода 10–15 МПа. Доказательства образования NaO 2 были впервые получены в реакции кислорода с натрием, растворенным в жидком аммиаке.

Действие воды на надпероксид натрия приводит к выделению кислорода даже на холоду:

2NaO 2 + H 2 O = NaOH + NaHO 2 + O 2

При повышении температуры количество выделяющегося кислорода увеличивается, так как происходит разложение образующегося гидропероксида натрия:

4NaO 2 + 2H 2 O = 4NaOH + 3O 2

Надпероксид натрия является компонентом систем для регенерации воздуха в замкнутых помещениях.

Озонид натрия NaО 3 образуется при действии озона на безводный порошок гидроксида натрия при низкой температуре с последующей экстракцией красного NaО 3 жидким аммиаком.

Гидроксид натрия NaOH нередко называют каустической содой или едким натром. Это сильное основание, его относят к типичным щелочам. Из водных растворов гидроксида натрия получены многочисленные гидраты NaOH·n H 2 O, где n = 1, 2, 2,5, 3,5, 4, 5,25 и 7.

Гидроксид натрия очень агрессивен. Он разрушает стекло и фарфор за счет взаимодействия с содержащимся в них диоксидом кремния:

2NaOH + SiO 2 = Na 2 SiO 3 + H 2 O

Название «едкий натр» отражает разъедающее действие гидроксида натрия на живые ткани. Особенно опасно попадание этого вещества в глаза.

Врач герцога Орлеанского Никола Леблан (Leblanc Nicolas) (1742–1806) в 1787 разработал удобный процесс получения гидроксида натрия из NaCl (патент 1791). Этот первый крупномасштабный промышленный химический процесс стал крупным технологическим достижением в Европе в 19 в. Позднее процесс Леблана был вытеснен электролитическим процессом. В 1874 мировое производство гидроксида натрия составило 525 тыс. т, из которых 495 тыс. т были получены по способу Леблана; к 1902 производство гидроксида натрия достигло 1800 тыс. т., ооднако по способу Леблана были получены только 150 тыс. т.

Сегодня гидроксид натрия – наиболее важная щелочь в промышленности. Ежегодное производство только в США превышает 10 млн. т. Ее получают в огромных количествах электролизом рассолов. При электролизе раствора хлорида натрия образуется гидроксид натрия и выделяется хлор:

катод (железный) 2H 2 O + 2e – = H 2 + 2OH –

анод (графитовый) 2Cl – – 2e – = Cl 2

Электролиз сопровождается концентрированием щелочи в огромных выпаривателях. Самый большой в мире (на заводе PPG Inductries" Lake Charles) имеет высоту 41 м и диаметр 12 м. Около половины производимого гидроксида натрия используется непосредственно в химической промышленности для получения различных органических и неорганических веществ: фенола, резорцина, b -нафтола, солей натрия (гипохлорита, фосфата, сульфида, алюминатов). Кроме того, гидроксид натрия применяется в производстве бумаги и пульпы, мыла и моющих средств, масел, текстиля. Он необходим и при переработке бокситов. Важной областью применения гидроксида натрия является нейтрализация кислот.

Хлорид натрия NaCl известен под названиями поваренной соли, каменной соли. Он образует бесцветные мало гигроскопичные кристаллы кубической формы. Хлорид натрия плавится при 801° С, кипит при 1413° С. Его растворимость в воде мало зависит от температуры: в 100 г воды при 20° С растворяется 35,87 г NaCl, а при 80° С – 38,12 г.

Хлорид натрия – необходимая и незаменимая приправа к пище. В далеком прошлом соль приравнивалась по цене к золоту. В древнем Риме легионерам часто платили жалование не деньгами, а солью, отсюда и произошло слово солдат.

В Киевской Руси пользовались солью из Прикарпатья, из соляных озер и лиманов на Черном и Азовском морях. Она обходилась настолько дорого, что на торжественных пирах ее подавали на столы знатных гостей, прочие же расходились «несолоно хлебавши».

После присоединения Астраханского края к Московскому государству важными источниками соли стали озера Прикаспия, и все равно ее не хватало, она была дорога, поэтому возникало недовольство самых бедных слоев населения, которое переросло в восстание, известное под названием Соляного Бунта (1648)

В 1711 Петр I издал указ о введении соляной монополии. Торговля солью стала исключительным правом государства. Соляная монополия просуществовала более полутораста лет и была отменена в 1862.

Ныне хлорид натрия – дешевый продукт. Вместе с каменным углем, известняком и серой он входит в так называемую «большую четверку» минерального сырья, наиболее существенного для химической промышленности.

Большая часть хлорида натрия производится в Европе (39%), Северной Америке (34%) и Азии (20%), в то время как на Южную Америку и Океанию приходится лишь по 3%, а на Африку – 1%. Каменная соль образует обширные подземные месторождения (нередко в сотни метров толщиной), которые содержат более 90% NaCl. Типичное Чеширское соляное месторождение (главный источник хлорида натрия в Великобритании) занимает площадь 60 ґ 24 км и имеет толщину соляного пласта около 400 м. Одно это месторождение оценивается более чем в 10 11 т.

Мировой объем добычи соли к началу 21 в. достиг 200 млн. т, 60% которой потребляет химическая промышленность (для производства хлора и гидроксида натрия, а также бумажной пульпы, текстиля, металлов, резин и масел), 30% – пищевая, 10% приходится на прочие сферы деятельности. Хлорид натрия используется, например, в качестве дешевого антигололедного реагента.

Карбонат натрия Na 2 CO 3 часто называют кальцинированной содой или просто содой. Он встречается в природе в виде грунтовых рассолов, рапы в озерах и минералов натрона Na 2 CO 3 ·10H 2 O, термонатрита Na 2 CO 3 ·H 2 O, троны Na 2 CO 3 ·NaHCO 3 ·2H 2 O. Натрий образует и другие разнообразные гидратированные карбонаты, гидрокарбонаты, смешанные и двойные карбонаты, например Na 2 CO 3 ·7H 2 O, Na 2 CO 3 ·3NaHCO 3 , aKCO 3 ·n H 2 O, K 2 CO 3 ·NaHCO 3 ·2H 2 O.

Среди солей щелочных элементов, получаемых в промышленности, карбонат натрия имеет наибольшее значение. Чаще всего для его производства используют метод, разработанный бельгийским химиком-технологом Эрнстом Сольве в 1863.

Концентрированный водный раствор хлорида натрия и аммиака насыщают диоксидом углерода под небольшим давлением. При этом образуется осадок сравнительно малорастворимого гидрокарбоната натрия (растворимость NaHCO 3 составляет 9,6 г на 100 г воды при 20° С):

NaCl + NH 3 + H 2 O + CO 2 = NaHCO 3 Ї + NH 4 Cl

Для получения соды гидрокарбонат натрия прокаливают:

Выделяющийся диоксид углерода возвращают в первый процесс. Дополнительное количество диоксида углерода получают за счет прокаливания карбоната кальция (известняка):

Второй продукт этой реакции – оксид кальция (известь) – используют для регенерации аммиака из хлорида аммония:

Таким образом, единственным побочным продуктом производства соды по методу Сольве является хлорид кальция.

Суммарное уравнение процесса:

2NaCl + CaCO 3 = Na 2 CO 3 + CaCl 2

Очевидно, в обычных условиях в водном растворе идет обратная реакция, поскольку равновесие в этой системе нацело смещено справа налево из-за нерастворимости карбоната кальция.

Кальцинированная сода, полученная из природного сырья (натуральная кальцинированная сода), имеет лучшее качество по сравнению с содой, полученной аммиачным способом (содержание хлоридов менее 0,2%). Кроме того, удельные капитальные вложения и себестоимость соды из природного сырья на 40–45% ниже, чем полученной синтетическим путем. Около трети мировой продукции соды приходится сейчас на природные месторождения.

Мировое производство Na 2 CO 3 в 1999 распределилось следующим образом:

Всего
Сев. Америка
Азия/Океания
Зап. Европа
Вост. Европа
Африка
Лат. Америка

Крупнейший в мире производитель натуральной кальцинированной соды – США, где сосредоточены и самые большие разведанные запасы троны и рапы содовых озер. Месторождение в Вайоминге образует слой толщиной 3 м и площадью 2300 км 2 . Его запасы превышают 10 10 т. В США содовая промышленность ориентирована на природное сырье; последнее предприятие по синтезу соды было закрыто в 1985. Выработка кальцинированной соды в США в последние годы стабилизировалась на уровне 10,3–10,7 млн. т.

В отличие от США, большинство стран мира практически полностью зависят от производства синтетической кальцинированной соды. Второе место в мире по производству кальцинированной соды после США занимает Китай. Выработка этого химиката в КНР в 1999 достигла примерно 7,2 млн. т. Производство кальцинированной соды в России в том же году составило порядка 1,9 млн. т.

Во многих случаях карбонат натрия взаимозаменяем с гидроксидом натрия (например, при получении бумажной пульпы, мыла, чистящих средств). Около половины карбоната натрия используется в стекольной промышленности. Одна из развивающихся областей применения – удаление сернистых загрязнений в газовых выбросах предприятий энергетики и мощных печей. В топливо добавляют порошок карбоната натрия, который реагирует с диоксидом серы с образованием твердых продуктов, в частности сульфита натрия, которые могут быть отфильтрованы или осаждены.

Ранее карбонат натрия широко применялся в качестве «стиральной соды», но эта область применения теперь исчезла из-за использования в быту других моющих средств.

Гидрокарбонат натрия NaHCO 3 (пищевая сода), применяется, главным образом, как источник диоксида углерода при выпечке хлеба, изготовлении кондитерских изделий, производстве газированных напитков и искусственных минеральных вод, как компонент огнетушащих составов и лекарственное средство. Это связано с легкостью его разложения при 50–100° С.

Сульфат натрия Na 2 SO 4 встречается в природе в безводном виде (тенардит) и в виде декагидрата (мирабилит, глауберова соль). Он входит в состав астрахонита Na 2 Mg(SO 4) 2 ·4H 2 O, вантгоффита Na 2 Mg(SO 4) 2 , глауберита Na 2 Ca(SO 4) 2 . Наиболее крупные запасы сульфата натрия – в странах СНГ, а также в США, Чили, Испании. Мирабилит, выделенный из природных залежей или рапы соляных озер, обезвоживают при 100° С. Сульфат натрия является также побочным продукт производства хлороводорода с использованием серной кислоты, а также конечным продуктом сотен промышленных производств, в которых применяется нейтрализация серной кислоты с помощью гидроксида натрия.

Данные о добыче сульфата натрия не публикуются, но, по оценке, мировое производство природного сырья составляет около 4 млн. т в год. Извлечение сульфата натрия в качестве побочного продукта оценивается в мире в целом в 1,5–2,0 млн. т.

Долгое время сульфат натрия мало использовался. Теперь это вещество – основа бумажной промышленности, так как Na 2 SO 4 является главным реагентом в сульфатной варке целлюлозы для приготовления коричневой оберточной бумаги и гофрированного картона. Древесные стружки или опилки переорабатывается в горячем щелочном растворе сульфата натрия. Он растворяет лигнин (компонент древесины, соединяющий волокна) и освобождает волокна целлюлозы, которые затем отправляют на машины для изготовления бумаги. Оставшийся раствор выпаривают, пока он не приобретет способность гореть, давая пар для завода и тепло для выпаривания. Расплавленные сульфат и гидроксид натрия устойчивы к действию пламени и могут быть использованы повторно.

Меньшая часть сульфата натрия применяется при производстве стекла и моющих средств. Гидратированная форма Na 2 SO 4 ·10H 2 O (глауберова соль) является слабительным средством. Сейчас она используется меньше, чем раньше.

Нитрат натрия NaNO 3 называют натриевой или чилийской селитрой. Большие залежи нитрата натрия, найденные в Чили, по-видимому, образовались за счет биохимического разложения органических остатков. Выделившийся вначале аммиак, вероятно, окислился до азотистой и азотной кислот, которые затем прореагировали с растворенным хлоридом натрия.

Получают нитрат натрия поглощением нитрозных газов (смесь оксидов азота) раствором карбоната или гидроксида натрия либо обменным взаимодействием нитрата кальция с сульфатом натрия.

Нитрат натрия применяют как удобрение. Он является компонентом жидких солевых хладагентов, закалочных ванн в металлообрабатывающей промышленности, теплоаккумулирующих составов. Тройная смесь из 40% NaNO 2 , 7% NaNO 3 и 53% KNO 3 может использоваться от температуры плавления (142° С) до ~600° С. Нитрат натрия используется как окислитель во взрывчатых веществах, ракетных топливах, пиротехнических составах. Он применяется в производстве стекла и солей натрия, в том числе нитрита, служащего консервантом пищевых продуктов.

Нитрит натрия NaNO 2 может быть получен термическим разложением нитрата натрия или его восстановлением:

NaNO 3 + Pb = NaNO 2 + PbO

Для промышленного производства нитрита натрия абсорбируют оксиды азота водным раствором карбоната натрия.

Нитрит натрия NaNO 2 , кроме использования с нитратами в качестве теплопроводных расплавов, широко применяется в производстве азокрасителей, для ингибирования коррозии и консервации мяса.

Елена Савинкина