Глаз строение глазного яблока. Строение оболочек глаза

1. В глазном яблоке выделяют фиброзную оболочку (tunica fibrosa bulbi), которая представляет собой соединительнотканный слой глазного яблока. Она служит опорой и защитой для других оболочек и частей глаза. Задние 2/3 волокнистой оболочки называются белочной оболочкой, или склерой, а передняя 1/3 - роговой оболочкой, или роговицей. На месте соприкосновения этих участков находится небольшая борозда склеры (sulcus sclerae).

Склера (sclera) содержит много эластических и коллагеновых волокон и мало основного вещества соединительной ткани; они образуют плотную пластинку, в наружном слое которой отсутствуют пигментные клетки. Белочная оболочка на медиальной части заднего полюса глаза имеет решетчатое строение. Через ее отверстия проникают отростки нейронов, формирующие зрительный нерв. В области заднего полюса и экватора глазного яблока толщина белочной оболочки 0,3 - 0,4 мм, а около роговицы - 0,6 мм. В белочной оболочке на ее белом фоне иногда хорошо видны артерии.

Вены находятся преимущественно в глубоких слоях белочной оболочки и не видны через глазную щель. Особенно хорошо развита венозная пазуха склеры (sinus venosus sclerae), которая проецируется на поверхности глаза по sulcus sclerae. Через венозный канал осуществляется резорбция жидкости из передней камеры глаза. С внутренней стороны около венозного синуса к фиброзной оболочке присоединяется радужная оболочка, которая образует гребенчатую связку (lig. pectinatum anguli iridocornealis). Эта связка соединяет наружный край радужной оболочки со склерой.

Роговая оболочка, или роговица (cornea), находящаяся на переднем полюсе глаза, представляет собой выпуклую кнаружи прозрачную пластинку, имеющую пять слоев эпителия и соединительнотканных волокон. Последние заключены в коллоидное вещество мукополисахаридной природы. Роговица в центральной части несколько тоньше (0,8 мм), чем по периферии (1,1 мм). Она содержит много чувствительных нервных окончаний и лишена кровеносных сосудов, ее питание осуществляется путем диффузии питательных веществ из жидкости передней камеры глаза и сосудов белочной оболочки, прилежащих к краю роговицы.

Строение роговицы своеобразно, и это обусловливает ее прозрачность. Вместе с жидкостью передней камеры глазного яблока она образует двояковыпуклую линзу, имеющую около 30D, что составляет главную преломляющую среду светового пучка.

2. Сосудистая оболочка (tunica vasculosa) является средним слоем глазного яблока. Она содержит сплетение кровеносных сосудов и пигментных клеток. Эта оболочка разделяется на три части: радужную оболочку, ресничное тело, собственно сосудистую оболочку (рис. 548).

548. Медиальный разрез глазного яблока.
1 - сетчатка; 2 - зрительная артерия и вена; 3 - сосудистая оболочка.

Радужная оболочка, или радужка (iris), толщиной 0,4 мм, относится к передней части сосудистой оболочки. Она имеет вид циркулярной пластинки со зрачком (pupilla) в центре. Ширина зрачка непостоянна, от 2 до 8 мм. Радужка наружным краем (margo ciliaris) сращена с белочной оболочкой и ресничным телом при помощи гребенчатой связки; внутренний край (margo pupillaris) ее почти ровный и ограничивает зрачок. В зависимости от интенсивности освещения величина зрачка автоматически изменяется, что обеспечивается сокращением радиальных (m. dilatator pupillae) и циркулярных (m. sphincter pupillae) мышечных волокон. Первые иннервируются симпатическими волокнами, вторые - парасимпатическими. В формировании радужки вместе с мышцами принимают участие эластические волокна, кровеносные сосуды, нервы и пигментные клетки; они определяют окраску радужной оболочки. Радужная оболочка омывается жидкостью передней и задней камер глаза.

Ресничное тело (corpus ciliare) находится с внутренней поверхности на месте перехода склеры в роговицу. На поперечном разрезе имеет форму треугольника (рис. 546), а при осмотре со стороны заднего полюса - форму циркулярного валика, на внутренней поверхности которого находятся радиально ориентированные отростки (processus ciliares) числом около 70. Ресничное тело и радужка прикреплены к склере гребенчатыми связками, имеющими губчатое строение. Эти полости заполнены жидкостью, поступающей из передней камеры, а затем в круговой венозный синус (шлеммов канал). От ресничных отростков отходят кольцеобразные связки, которые вплетаются в капсулу хрусталика. Процесс аккомодации, т. е. приспособления глаза к близкому или дальнему видению, возможен благодаря ослаблению или натяжению кольцеобразных связок; они находятся под контролем мышц ресничного тела, состоящих из меридиональных и круговых, волокон (fibrae meridionales et circulares). При сокращении круговых мышц ресничные отростки приближаются к центру ресничного кружка и кольцеобразные связки ослабляются. За счет внутренней упругости хрусталик расправляется и увеличивается кривизна; тем самым уменьшается фокусное расстояние.

Одновременно с сокращением круговых мышечных волокон происходит сокращение и меридиональных мышечных волокон, которые подтягивают заднюю часть сосудистой оболочки и ресничное тело настолько, насколько уменьшается фокусное расстояние светового пучка. При расслаблении вследствие эластичности ресничное тело принимает исходное положение и, натягивая кольцеобразные связки, напрягает капсулу хрусталика, уплощая его; при этом задний полюс глаза также занимает исходное положение.

В старческом возрасте часть мышечных волокон ресничного тела замещается соединительной тканью. Эластичность и упругость хрусталика также уменьшаются, что приводит к нарушению зрения.

Собственно сосудистая оболочка (chorioidea) занимает 2/3 задней части глазного яблока. Оболочка состоит из эластических волокон, кровеносных и лимфатических сосудов, пигментных клеток, создающих темно-коричневый фон. Она рыхло сращена с внутренней поверхностью белочной оболочки и легко смещается при аккомодации. У животных в этой части сосудистой оболочки скапливаются соли кальция, которые образуют глазное зеркало, отражающее световые лучи, что создает условия для свечения подобных глаз в темноте.

3. Сетчатая оболочка, или сетчатка (retina), самая внутренняя, распространяется до зазубренного края (area serrata), лежащего у места перехода ресничного тела в собственно сосудистую оболочку. По этой линии сетчатка делится на переднюю и заднюю части.

Сетчатая оболочка имеет 11 слоев, которые можно объединить в два листка: пигментный - наружный и мозговой - внутренний. В мозговом слое располагаются светочувствительные клетки - палочки и колбочки; их наружные светочувствительные членики направлены к пигментному слою, т. е. кнаружи. Следующий слой - биполярные клетки, образующие контакты с палочками, колбочками и ганглиозными клетками, аксоны которых формируют зрительный нерв. Кроме того, имеются горизонтальные клетки, расположенные между палочками и биполярными клетками и амакриновые клетки для объединения функции ганглиозных клеток (). В сетчатке человека около 125 млн. палочек и около 6,5 млн. колбочек. В желтом пятне имеются только колбочки, а палочки располагаются по периферии сетчатки. Пигментные клетки сетчатки изолируют каждую светочувствительную клетку от другой и от побочных лучей, создавая условия для образного зрения.

При ярком освещении палочки и колбочки погружаются в пигментный слой. У трупа сетчатка матово-белая, без характерных анатомических особенностей. При осмотре с помощью офтальмоскопа сетчатки (глазного дна) у живого человека она имеет ярко-красный фон вследствие просвечивания в сосудистой оболочке крови. На этом фоне видны ярко-красные кровеносные сосуды сетчатки (рис. 549).

На заднем полюсе глаза различимо овальное пятно - диск зрительного нерва (discus n. optici) размером 1,6-1,8 мм с углублением в центре (excavatio disci). К этому пятну радиально сходятся ветви зрительного нерва, лишенные миелиновой оболочки, и вены; в зрительную часть сетчатки расходятся артерии. Эти сосуды снабжают кровью только сетчатку (рис. 549).


549. Дно глазного яблока.
1 - артерия; 2 - вена; 3 - желтое пятно; 4 - центральная ямка желтого пятна.

По сосудистому рисунку сетчатки можно судить о состоянии кровеносных сосудов всего организма и о некоторых его заболеваниях. Латеральнее на 4 мм на уровне диска зрительного нерва лежит пятно (macula) с центральной ямкой (fovea centralis), окрашенные в красно-желто-коричневый цвет. В пятне концентрируется фокус световых лучей, оно является местом наилучшего восприятия световых раздражений. В пятне находятся светочувствительные клетки - колбочки, а палочки расположены по периферии сетчатки. Палочки и колбочки залегают на периферии сетчатки около пигментного слоя. Световые лучи, таким образом, проникают через все слои прозрачной сетчатки. Под действием света родопсин палочек и колбочек распадается на ретинен и белок (скотопсин). В результате распада образуется энергия, которая улавливается биполярными клетками сетчатки. Родопсин постоянно ресинтезируется из скотопсина и витамина А.

Физиология сна

Сон - это своеобразное состояние ЦНС, характеризующееся выключением сознания, угнетением двигательной активности, снижением обменных процессов, всех видов чувствительности. Во время сна затормаживаются условные рефлексы и значительно ослаблены безусловные. Уменьшается чсс, АД, дыхание становится более редким и поверхностным. Сон является физиологической потребностью организма. После сна улучшается самочувствие, работоспособность, внимание. Лишение человека сна приводит к расстройствам памяти и может вызвать психические заболевания. Различают фазу медленного сна (на энцефалограмме преобладают медленные высокоамплитудные волны) и фазу быстрого сна (частые низкоамплитудные волны) - если человека разбудить в этой фазе, то он сообщает, что видел во сне. В сумме эти 2 фазы продолжаются около 1,5 часа, а затем цикл повторяется снова. Взрослый человек спит 1 раз в сутки 7-8 часов, такой сон называется однофазным. У детей, особенно раннего возраста сон многофазный, его продолжительность составляет около 20 часов в сутки. Кроме нормального, физиологического сна, существует также патологический сон - при воздействии алкоголя, наркотиков, гипноза и т.д. Существуют различные теории, объясняющие механизмы сна. Согласно одной из них, сон является следствием самоотравления организма (в частности, мозга) продуктами обмена веществ, которые накапливаются при бодрствовании (молочная кислота, NH3, CO2 и др.). Другая теория объясняет чередование сна и бодрствования сменной активности подкорковых центров. Во время сна одни центры тормозятся, а другие находятся в состоянии активности, осуществляя обработку поступившей за день информации, её перераспределение и запоминание.

Тема: «Орган зрения»

Орган зрения располагается в глазнице, стенки которой выполняют защитную роль. Он представлен глазным яблоком и вспомогательными органами глаза (брови, веки, ресницы, слёзный аппарат). Глазное яблоко на разрезе имеет не совсем правильную шаровидную форму. Оно включает 3 оболочки, а также прозрачные светопреломляющие среды - хрусталик, стекловидное тело и водянистую влагу камер глаза.

В глазном яблоке различают 3 оболочки: наружную - фиброзную,

среднюю - сосудистую и внутреннюю - сетчатку.

1. Наружная - фиброзная оболочка - это плотная соединительнотканная оболочка, которая защищает глазное яблоко от внешних воздействий, придаёт ему форму и служит местом прикрепления мышц. Она состоит из 2-ух отделов - прозрачной роговицы и непрозрачной склеры.

а) Роговица - передняя часть фиброзной оболочки, она имеет вид прозрачной выпуклой пластинки и служит для пропускания в глаз световых лучей. Роговица не содержит кровеносных сосудов, но в ней много нервных окончаний, поэтому попадание даже маленькой соринки на роговицу вызывает боль. Воспаление роговицы называется кератит.


б) Склера - задняя непрозрачная часть фиброзной оболочки, имеющая белый или голубоватый цвет. Через неё проходят сосуды и нервы, к ней прикрепляются глазодвигательные мышцы.

2 . Средняя (сосудистая) оболочка - богата кровеносными сосудами, питающими глазное яблоко. Она состоит из 3 частей: радужки, ресничного тела и собственно сосудистой оболочки.

а) Радужка - передней отдел сосудистой оболочки. Она имеет форму диска, в центре которой находится отверстие - зрачок , служащий для регуляции светового потока. Радужка содержит пигментные клетки, от количества которых зависит цвет глаз: при большом количестве пигмента меланина глаза карие или чёрные, при небольшом количестве пигмента - зелёные, серые или голубые. Кроме того, в радужке содержатся гладкомышечные клетки, за счёт которых изменяется размер зрачка: при сильном свете зрачок суживается, а при слабом - расширяется. Воспаление радужки - ирит.

б) Ресничное тело - средняя утолщённая часть сосудистой оболочки. Содержит гладкомышечные клетки и с помощью ресничного пояса (цинновой связки) поддерживает хрусталик. В зависимости от сокращения мышц ресничного тела эти связки могут натягиваться или расслабляться, вызывая изменение кривизны хрусталика. Так, при рассматривании близких предметов цинновя связка расслабляется и хрусталик становится более выпуклым. При рассматривании далёких предметов ресничный поясок, наоборот, натягивается и хрусталик уплощается. Способность глаза видеть разноудалённые предметы (близкие и далёкие) называется аккомодация . Кроме того, ресничное тело осуществляет фильтрацию из крови прозрачной водянистой влаги, которая питает все внутренние структуры глаза. Воспаление ресничного тела - циклит.

в) Собственно сосудистая оболочка - это задняя часть сосудистой оболочки. Она выстилает склеру изнутри и состоит из большого количества сосудов.

3. Внутренняя оболочка -сетчатка - прилежит изнутри к сосудистой оболочке. Она содержит светочувствительные нервные клетки - палочки и колбочки. Колбочки воспринимают световые лучи при ярком (дневном) свете и одновременно являются рецепторами цвета. В них содержится зрительный пигмент - йодопсин. Палочки являются рецепторами сумеречного света и содержат пигмент родопсин (зрительный пурпур). Отростки палочек и колбочек, соединяясь в один пучок, образуют зрительный нерв (ІІ пара черепных нервов). В листе выхода зрительного нерва из сетчатки светочувствительные клетки отсутствуют - это так называемое слепое пятно. Сбоку от слепого пятна, как раз напротив хрусталика, расположено жёлтое пятно - это участок сетчатки, в которой сосредоточены только колбочки, поэтому его считают местом наибольшей остроты зрения. При раздражении палочек и колбочек световыми лучами содержащиеся в них зрительные пигменты (родопсин и йодопсин) разрушаются. При затемнении глаз происходит восстановление зрительных пигментов, и для этого необходим Vit A. Если Vit A в организме отсутствует, то образование зрительного пигмента нарушается. Это ведёт к развитию гемералопии (куриной слепоты), т.е. неспособности видеть при слабом свете или в темноте.

Строение глаза человека включает в себя множество сложных систем которые составляют зрительную систему с помощью которой обеспечивается получение информации о том, что окружает человека. Входящие в ее состав органы чувств, характеризуемые как парные, отличается сложностью строения и уникальностью. Каждый из нас обладает индивидуальными глазами. Их характеристики исключительные. В то же время схема строения глаза человека и функционал, имеет общие черты.

Эволюционное развитие привело к тому, что органы зрения стали максимально сложными образованиями на уровне структур тканевого происхождения. Основное предназначение глаза заключается в обеспечении зрения. Эту возможность гарантируют кровеносные сосуды, соединительные ткани, нервы и пигментные клетки. Ниже приведем описание анатомии и основных функций глаза с обозначениями.


Под схемой строения глаз человека следует понимать весь глазной аппарат имеющий оптическую систему, отвечающую за обработку информации в виде зрительных образов. Здесь подразумевается ее восприятие, последующая обработка и передача. Все это реализуется за счет элементов, формирующих глазное яблоко.

Глаза имеют округлую форму. Местом его расположения служит специальная выемка в черепе. Она именуется как глазная. Наружная часть закрывается веками и складками кожи, служащими для размещения мышц и ресниц.


Их функциональность заключается в следующем:
  • увлажнение, что обеспечивают находящиеся в ресницах железы. Секреторные клетки этого вида способствуют образованию соответствующей жидкости и слизи;
  • защита от повреждений механического характера. Это достигается посредством смыкания век;
  • удаление мельчайших частиц, попадающих на склеру.

Функционирование системы зрения настроено таким образом, чтобы с максимальной точностью осуществлять передачу получаемых световых волн. В этом случае требуется бережное отношение. Рассматриваемые органы чувств отличаются хрупкостью.

Веки

Кожные складки – это то, что представляют собой веки, которые постоянно находятся в движении. Происходит мигание. Такая возможность доступна благодаря наличию связок, расположенных по краям век. Также эти образования выступают в роли соединительных элементов. С их помощью веки крепятся к глазнице. Кожа образует верхний слой век. Затем следует слой мышц. Далее идет хрящевая ткань и конъюнктива.

Веки в части наружного края имеют два ребра, где одно – переднее, а другое – заднее. Они образуют интермаргинальное пространство. Сюда выводятся протоки, идущие от мейбомиевых желез. С их помощью вырабатывается секрет, дающий возможность скользить векам с предельной легкостью. При этом достигается плотность смыкания век, и создаются условия для правильного отвода слезной жидкости.

На переднем ребре находятся луковицы, обеспечивающие рост ресничек. Сюда же выходят протоки, служащие транспортными путями для маслянистого секрета. Здесь же располагаются выводы потовых желез. Углы век соотносятся с выводами слезных протоков. Заднее ребро служит гарантией того, что каждое веко будет плотно прилегать к глазному яблоку.

Для век характерны сложные системы, обеспечивающие эти органы кровью и поддерживающие правильность проводимости нервных импульсов. За кровоснабжение отвечает сонная артерия. Регуляция на уровне нервной системы – задействование двигательных волокон, формирующих лицевой нерв, а также обеспечивающих соответствующую чувствительность.

К главным функциям века относят защиту от повреждений в результате механического воздействия и инородных тел. К этому следует добавить функцию увлажнения, способствующую насыщению влагой внутренних тканей органов зрения.

Глазница и ее содержимое

Под костной впадиной понимается глазница, которая еще именуется как костная орбита. Она служит надежной защитой. Структура этого образования включает в себя четыре части – верхнюю, нижнюю, наружную и внутреннюю. Они образуют единое целое за счет устойчивого соединения между собой. При этом их прочность различная.

Особой надежностью отличается наружная стенка. Внутренняя значительно слабее. Тупые травмы способны спровоцировать ее разрушение.


К особенностям стенок костной впадины относят их соседство с воздушными пазухами:
  • внутри – решетчатый лабиринт;
  • низ – гайморова пазуха;
  • верх – лобная пустота.


Подобное структурирование создает определенную опасность. Опухолевые процессы, развивающиеся в пазухах, способны распространиться и на полость глазницы. Допустимо и обратное действие. Глазница сообщается с полостью черепа посредством большого числа отверстий, что предполагает возможность перехода воспаления на участки головного мозга.

Зрачок

Зрачок глаза представляет собой отверстие круглой формы, расположенное в центре радужки. Его диаметр способен изменяться, что позволяет регулировать степень проникновения светового потока во внутреннюю область глаза. Мышцы зрачка в виде сфинктера и дилататора обеспечивают условия, когда изменяется освещенность сетчатки. Задействование сфинктера сужает зрачок, а дилататора – расширяет.

Такое функционирование упомянутых мышц сродни тому, как действует диафрагма фотоаппарата. Слепящий свет приводит к уменьшению ее диаметра, что отсекает слишком интенсивные световые лучи. Создаются условия, когда достигается качество изображения. Недостаток освещенности приводит к другому результату. Диафрагма расширяется. Качество снимка опять же остается высоким. Здесь можно говорить о диафрагмирующей функции. С ее помощью обеспечивается зрачковый рефлекс.


Величина зрачков регулируется в автоматическом режиме, если такое выражение допустимо. Сознание человека явным образом этот процесс не контролирует. Проявление зрачкового рефлекса связано с изменением освещенности сетчатой оболочки. Поглощение фотонов запускает процесс передачи соответствующей информации, где под адресатами понимаются нервные центры. Требуемая реакция сфинктера достигается после обработки сигнала нервной системой. В действие вступает ее парасимпатический отдел. Что касается дилататора, то здесь в дело вступает симпатический отдел.

Рефлексы зрачка

Реакция в виде рефлекса обеспечивается за счет чувствительности и возбуждения двигательной активности. Сначала формируется сигнал как ответ на определенное воздействие, в дело вступает нервная система. Затем следует конкретная реакция на раздражитель. В работу включаются мышечные ткани.

Освещение заставляет зрачок сужаться. Это отсекает слепящий свет, что положительно сказывается на качестве зрения.


Такая реакция может характеризоваться следующим образом:
  • прямая – освещается один глаз. Он реагирует требуемым образом;
  • содружественная – второй орган зрения не освещается, но отзывается на световое воздействие, оказываемое на первый глаз. Эффект этого вида достигается посредством того, что волокна нервной системы частично перекрещиваются. Образуется хиазма.

Раздражитель в виде света не является единственной причиной изменения диаметра зрачков. Еще возможны такие моменты, как конвергенция – стимуляция активности прямых мышц зрительного органа, и – задействование цилиарной мышцы.

Возникновение рассматриваемых зрачковых рефлексов происходит тогда, когда изменяется точка стабилизации зрения: взгляд переводится с объекта, расположенного на большом удалении, на объект, находящийся на более близком расстоянии. Задействуются проприорецепторы упомянутых мышц, что обеспечивают волокна, идущие к глазному яблоку.

Эмоциональный стресс, например, в результате боли или испуга, стимулирует расширение зрачка. Если раздражается тройничный нерв, а это говорит о низкой возбудимости, то наблюдается эффект сужения. Также подобные реакции возникают при приеме определенных лекарственных препаратов, возбуждающих рецепторы соответствующих мышц.

Зрительный нерв

Функциональность зрительного нерва заключается в доставке соответствующих сообщений в определенные области головного мозга, предназначенные для обработки световой информации.

Импульсы света сначала попадают на сетчатку. Местонахождение зрительного центра определяется затылочной долей головного мозга. Структура зрительного нерва предполагает наличие нескольких составляющих.

На этапе внутриутробного развития структуры головного мозга, внутренней оболочки глаза и зрительного нерва идентичны. Это дает основание утверждать, что последний – часть мозга, находящаяся вне пределов черепной коробки. При этом обычные черепно-мозговые нервы имеют отличную от него структуру.

Длина зрительного нерва небольшая. Составляет 4–6 см. Преимущественно местом его расположения служит пространство за глазным яблоком, где он погружен в жировую клетку орбиты, что гарантирует защиту от повреждений извне. Глазное яблоко в части заднего полюса – участок, где начинается нерв этого вида. В этом месте наблюдается скопление нервных отростков. Они формируют своеобразный диск (ДЗН). Такое название объясняется приплюснутостью формы. Двигаясь дальше, нерв выходит в глазницу с последующим погружением в мозговые оболочки. Затем он достигает передней черепной ямки.


Зрительные пути образуют хиазму внутри черепа. Они пересекаются. Эта особенность важна при диагностировании глазных и неврологических заболеваний.

Непосредственно под хиазмом находится гипофиз. От его состояния зависит, насколько эффективно способна работать эндокринная система. Такая анатомия отчетливо просматривается, если опухолевые процессы затрагивают гипофиз. Правлением патологии этого вида становится оптико-хиазмальный синдром.

Внутренние ветви сонной артерии отвечают за то, чтобы обеспечивать зрительный нерв кровью. Недостаточная длина цилиарных артерий исключает возможность хорошего кровоснабжения ДЗН. В то же время другие части получают кровь в полном объеме.

Обработка световой информации напрямую зависит от зрительного нерва. Главная его функция – доставить сообщения относительно полученной картинки до конкретных адресатов в виде соответствующих зон головного мозга. Любые травмы этого образования вне зависимости от тяжести способны привести к негативным последствиям.

Камеры глазного яблока

Пространства замкнутого типа в глазном яблоке – это так называемые камеры. В них содержится внутриглазная влага. Между ними существует связь. Таких образований два. Одно занимает переднее положение, а другое – заднее. В качестве связующего звена выступает зрачок.

Переднее пространство расположено сразу за областью роговицы. Его тыльная сторона ограничена радужной оболочкой. Что касается пространства за радужкой, то это задняя камера. Стекловидное тело служит ей опорой. Неизменяемый объем камер – это норма. Производство влаги и ее отток – процессы, способствующие корректировке соответствия стандартным объемам. Выработка глазной жидкости возможна за счет функциональности ресничных отростков. Ее отток обеспечивается благодаря системе дренажей. Она находится во фронтальной части, где роговица контактирует со склерой.

Функциональность камер заключается в поддержании «сотрудничества» между внутриглазными тканями. Также они отвечают за поступление световых потоков на сетчатую оболочку. Лучи света на входе преломляются соответствующим образом в результате совместной деятельности с роговицей. Это достигается посредством свойств оптики, присущих не только влаге внутри глаза, но и роговой оболочке. Создается эффект линзы.

Роговица в части ее эндотелиального слоя выступает в роли внешнего ограничителя для передней камеры. Рубеж обратной стороны формируется радужкой и хрусталиком. Максимальная глубина приходится на ту область, где располагается зрачок. Ее величина доходит до 3,5 мм. При движении к периферии этот параметр медленно уменьшается. Иногда такая глубина оказывается большей, например, при отсутствии хрусталика ввиду его удаления, или меньшей, если отслаивается сосудистая оболочка.


Заднее пространство ограничивается спереди листком радужки, а его тыльная часть упирается в стекловидное тело. В роли внутреннего ограничителя выступает экватор хрусталика. Внешний барьер образует цилиарное тело. Внутри находится большое число цинновых связок, представляющих собой тонкие нити. Они создают образование, выступающее в роли связующего звена между ресничным телом и биологической линзой в виде хрусталика. Форма последнего способна изменяться под воздействием цилиарной мышцы и соответствующих связок. Это обеспечивает требуемую видимость объектов вне зависимости от расстояния до них.

Состав влаги, находящейся внутри глаза, соотносится с характеристиками плазмы крови. Внутриглазная жидкость делает возможным доставку питательных веществ, востребованных с целью обеспечения нормальной работы органов зрения. Также с ее помощью реализуется возможность удаления продуктов обмена.

Вместительность камер определяется объемами в диапазоне от 1,2 до 1,32 см3. При этом важно то, как производится выработка и отток глазной жидкости. Эти процессы требуют равновесия. Любые нарушения работы такой системы приводят к негативным последствиям. Например, существует вероятность развития , что грозит серьезными проблемами с качеством зрения.

Цилиарные отростки служат источниками глазной влаги, что достигается за счет фильтрации крови. Непосредственное место, где образуется жидкость, – задняя камера. После этого она перемещается в переднюю с последующим оттоком. Возможность этого процесса обусловливается разницей давления, создающегося в венах. На последнем этапе происходит всасывание влаги этими сосудами.

Шлеммов канал

Щель внутри склеры, характеризуемая как циркулярная. Названа по фамилии немецкого врача Фридриха Шлемма. Передняя камера в части своего угла, где образуется стык радужки и роговицы, – это более точная область расположения шлеммова канала. Его предназначение заключается в отводе водянистой влаги с обеспечением последующего ее всасывания передней цилиарной веной.


Строение канала в большей мере соотносится с тем, как выглядит лимфатический сосуд. Внутренняя его часть, вступающая в соприкосновение с вырабатываемой влагой, представляет собой сетчатое образование.

Возможности канала в плане транспортировки жидкости составляют от 2 до 3 микро литров в минуту. Травмы и инфекции блокируют работу канала, что провоцирует появления заболевания в виде глаукомы.

Кровоснабжение глаза

Создание потока крови, поступающего к органам зрения, – это функциональность глазной артерии которая является неотъемлемой частью строения глаза. Образуется соответствующая ветвь от сонной артерии. Она достигает глазного отверстия и проникает внутрь глазницы, что делает вместе со зрительным нервом. Затем ее направление меняется. Нерв огибается с внешней стороны таким образом, что ветвь оказывается сверху. Формируется дуга с исходящими от нее мышечными, ресничными и другими ветвями. С помощью центральной артерии обеспечивается кровоснабжение сетчатой оболочки. Сосуды, участвующие в этом процессе, образуют свою систему. В ее состав входят также и ресничные артерии.

После того, как система оказывается в глазном яблоке, происходит ее разделение на ветви, что гарантирует полноценное питание сетчатки. Такие образования определяются как концевые: они не имеют соединений с рядом находящимися сосудами.

Цилиарные артерии характеризируют по признаку расположения. Задние достигают тыльной области глазного яблока, минуют склеру и расходятся. К особенностям передних относят то, что они различаются по длине.

Цилиарные артерии, определяемые как короткие, проходят склеру и формируют отдельное сосудистое образование, состоящее из множества ветвей. На входе в склеру образуется сосудистый венчик из артерий этого вида. Он возникает там, где зрительный нерв берет свое начало.

Цилиарные артерии меньшей длины также оказываются в глазном яблоке и устремляются к ресничному телу. Во фронтальной области каждый такой сосуд распадается на два ствола. Создается образование, обладающее концентрической структурой. После чего они встречаются с подобными ответвлениями другой артерии. Формируется круг, определяемый как большой артериальный. Также возникает аналогичное образование меньших размеров на месте, где находится пояс радужки ресничный и зрачковый.


Цилиарные артерии, характеризуемые как передние, – это часть мышечных кровеносных сосудов подобного типа. Они не заканчиваются в области, образуемой прямыми мышцами, а тянутся дальше. Происходит погружение в эписклеральную ткань. Сначала артерии проходят по периферии глазного яблока, а затем углубляются в него посредством семи ответвлений. В итоге происходит их соединение друг с другом. По периметру радужки формируется круг кровообращения, обозначаемый как большой.

На подходе к глазному яблоку образуется петлистая сеть, состоящая из цилиарных артерий. Она опутывает роговицу. Также происходит деление не ветви, обеспечивающие кровоснабжение конъюнктивы.

Частично оттоку крови способствуют вены, идущие вместе с артериями. Преимущественно это возможно за счет венозный путей, собирающихся в отдельные системы.

Своеобразными коллекторами служат водоворотные вены. Их функциональность – сбор крови. Прохождение этими венами склеры происходит под косым углом. С их помощью обеспечивается отвод крови. Она поступает в глазницу. Основной сборщик крови – глазная вена, занимающая верхнее положение. Посредством соответствующей щели она выводится в пещеристый синус.

Глазная вена внизу принимает кровь от проходящих в этом месте водоворотных вен. Происходит ее раздвоение. Одна ветвь соединяется с глазной веной, находящейся вверху, а другая – достигает глубокой вены лица и щелевидного пространства с крыловидным отростком.

В основном кровоток от ресничных вен (передних) наполняет подобные сосуды глазницы. В результате основной объем крови поступает в венозные пазухи. Создается обратное движение потока. Оставшаяся кровь движется вперед и наполняет вены лица.

Орбитальные вены соединяются с венами полости носа, лицевыми сосудами и решетчатой пазухой. Самый крупный анастомоз образуют вены глазницы и лица. Его граница затрагивает внутренний угол век и соединяет непосредственно глазную вену и лицевую.

Мышцы глаза

Возможность хорошего и объемного зрения достигается тогда, когда глазные яблоки способны двигаться определенным образом. Здесь особую важность приобретает согласованность работы зрительных органов. Гарантами такого функционирования выступают шесть мышц глаза, где четыре из них прямые, а две – косые. Последние так называются ввиду особенности хода.

За активность этих мышц несут ответственность черепные нервы. Волокна рассматриваемой группы мышечной ткани максимально насыщены нервными окончаниями, что обусловливает их работу с позиции высокой точности.

Посредством мышц, отвечающих за физическую активность глазных яблок, доступны разноплановые движения. Потребность в реализации этой функциональности определяется тем, что требуется слаженная работа мышечных волокон этого типа. Одни и те же картинки предметов должны фиксироваться на одинаковых областях сетчатки. Это позволяет ощущать глубину пространства и отлично видеть.



Строение мышц глаза

Мышцы глаза начинаются возле кольца, которое служит окружением зрительного канала вблизи к наружному отверстию. Исключение касается лишь косой мышечной ткани, занимающей нижнее положение.

Мышцы расположены так, что формируют воронку. Через нее проходят нервные волокна и кровеносные сосуды. По мере удаления от начала этого образования происходит отклонение косой мышцы, находящейся вверху. Наблюдается смещение в сторону своеобразного блока. Здесь она преобразуется в сухожилие. Прохождение сквозь петлю блока задает направление под углом. Мышца крепится в верхнем радужном отделе глазного яблока. Там же начинается косая мышца (нижняя), от края глазницы.

По мере приближения мышц к глазному яблоку, образуется плотная капсула (теноновая оболочка). Устанавливается соединение со склерой, что происходит с разной степенью удаленности от лимба. На минимальном удалении располагается внутренняя прямая мышца, на максимальном - верхняя. Фиксация косых мышц производится в ближе к центру глазного яблока.

Функциональность глазодвигательного нерва заключается в поддержании правильной работы мышц глаза. Ответственность отводящего нерва определяется поддержанием активности прямой мышцы (наружной), а блокового – верхней косой. Для регуляции этого вида характерна своя особенность. Контроль незначительного числа мышечных волокон осуществляется за счет одной ветви двигательного нерва, что значительно повышает четкость движений глаз.

Нюансы крепления мышц задают вариативность того, как именно способны двигаться глазные яблоки. Прямые мышцы (внутренние, наружные) крепятся таким образом, что они обеспечиваются горизонтальные повороты. Активность внутренней прямой мышцы позволяет поворачивать глазное яблоко по направлению к носу, а наружной – к виску.

За вертикальные движения отвечают прямые мышцы. Существует нюанс их расположения, обусловленный тем, что присутствует определенный наклон линии фиксации, если ориентироваться на линию лимба. Это обстоятельство создает условия, когда вместе с вертикальным движением глазное яблоко поворачивается внутрь.

Функционирование косых мышц отличается большей сложностью. Объясняется это особенностями расположения этой мышечной ткани. Опускание глаза и поворот наружу обеспечивает косая мышца, расположенная вверху, а подъем, включая поворот наружу, – также косая мышца, но уже нижняя.

Еще к возможностям упомянутых мышц относят обеспечение незначительных поворотов глазного яблока в соответствии с движением часовой стрелки вне зависимости от направления. Регуляция на уровне поддержания нужной активности нервных волокон и слаженность работы глазных мышц – два момента, способствующие реализации сложных поворотов глазных яблок любой направленности. В результате зрение приобретает такое свойство, как объем, а его четкость существенно повышается.

Оболочки глаза

Форма глаза удерживается благодаря соответствующим оболочкам. Хотя на этом функциональность этих образований не исчерпывается. С их помощью осуществляется доставка питательных веществ, и поддерживается процесс (четкое видение предметов при изменении величины расстояния до них).


Органы зрения отличаются многослойной структурой, проявляемой в виде следующих оболочек:
  • фиброзная;
  • сосудистая;
  • сетчатка.

Фиброзная оболочка глаза

Соединительная ткань, позволяющая удерживать конкретную форму глаза. Также выступает в роли защитного барьера. Структура фиброзной оболочки предполагает наличие двух составляющих, где одна – это роговица, а вторая – склера.

Роговица

Оболочка, отличающаяся прозрачностью и эластичностью. По форме соотносится с выпукло-вогнутой линзой. Функциональность практически идентична тому, что делает линза фотоаппарата: фокусирует лучи света. Вогнутая сторона роговицы смотрит назад.


Состав этой оболочки формируется посредством пяти слоев:
  • эпителий;
  • боуменова мембрана;
  • строма;
  • десцеметова оболочка;
  • эндотелий.

Склера

В строении глаза важную роль играет внешняя защита глазного яблока. Формирует фиброзную оболочку, включающую также и роговицу. В отличие от последней склера представляет собой непрозрачную ткань. Связано это с хаотичным расположением коллагеновых волокон.

Основная функция – качественное зрение, что гарантируется ввиду препятствования проникновению световых лучей сквозь склеру.

Исключается вероятность ослепления. Также это образование служит опорой для составляющих глаза, вынесенных за пределы глазного яблока. Сюда относят нервы, сосуды, связки и глазодвигательные мышцы. Плотность структуры обеспечивает поддержание в заданных значениях внутриглазного давления. Шлемов канал выступает в роли транспортного канала, обеспечивающего отток глазной влаги.


Сосудистая оболочка

Формируется на основе трех частей:
  • радужка;
  • цилиарное тело;
  • хориоидея.

Радужка

Часть сосудистой оболочки, отличающаяся от других отделов этого образования тем, что ее расположение фронтальное против пристеночного, если ориентироваться на плоскость лимба. Представляет собой диск. В центре находится отверстие, известное как зрачок.


Структурно состоит из трех слоев:
  • пограничный, расположенный спереди;
  • стромальный;
  • пигментно-мышечный.

В формировании первого слоя участвуют фибробласты, соединяющиеся между собой посредством своих отростков. За ними располагаются пигментсодержащие меланоциты. От количества этих специфичных клеток кожи зависит цвет радужки. Этот признак передается по наследству. Коричневая радужка в плане наследования является доминантной, а голубая – рецессивной.

У основной массы новорожденных радужка имеет светло-голубой оттенок, что обусловливается слабо развитой пигментацией. Ближе к полугодовалому возрасту цвет становится более темным. Это связано с ростом числа меланоцитов. Отсутствие меланосом у альбиносов приводит к доминированию розового цвета. В некоторых случаях возможна , когда глаза в части радужки получают разную окраску. Меланоциты способны провоцировать развитие меланом.

Дальнейшее погружение в строму открывает сеть, состоящую из большого числа капилляров и волокон коллагена. Распространение последних захватывает мышцы радужки. Происходит соединение с ресничным телом.

Задний слой радужки состоит из двух мышц. Сфинктер зрачка, по форме напоминающий кольцо, и дилататор, имеющий радиальную ориентацию. Функционирование первого обеспечивает глазодвигательный нерв, а второго – симпатический. Также здесь присутствует пигментный эпителий как часть недифференцированной области сетчатки.

Толщина радужки отличается вариативностью в зависимости от определенного участка этого образования. Диапазон таких изменений составляет 0,2–0,4 мм. Минимум толщины наблюдается в корневой зоне.

Центр радужки занимает зрачок. Его ширина изменчива под воздействием света, что обеспечивают соответствующие мышцы. Большая освещенность провоцирует сжатие, а меньшая – расширение.

Радужка в части своей передней поверхности делится на зрачковый и ресничный пояса. Ширина первого составляет 1 мм и второго – от 3 до 4 мм. Разграничение в этом случае обеспечивает своеобразный валик, обладающий зубчатой формой. Мышцы зрачка распределены следующим образом: сфинктер – зрачковый пояс, а дилататор – ресничный.

Ресничные артерии, формирующие большой артериальный круг, доставляют кровь к радужке. Еще в этом процессе участвует и малый артериальный круг. Иннервация этой определенных зон сосудистой оболочки достигается за счет ресничных нервов.

Ресничное тело

Область сосудистой оболочки, отвечающая за выработку глазной жидкости. Используется также такое название, как цилиарное тело.
Структура рассматриваемого образования – мышечные ткани и кровеносные сосуды. Мышечное содержание этой оболочки предполагает наличие нескольких слоев, имеющих разную направленность. Их активность включает в работу хрусталик. Его форма меняется. В результате человек получает возможность четкого видения объектов на разных расстояниях. Еще одна функциональность ресничного тела заключается в удержании тепла.

Кровеносные капилляры, находящиеся в ресничных отростках, способствуют производству внутриглазной влаги. Происходит фильтрация кровотока. Влага этого вида обеспечивает нужное функционирование глаза. Удерживается постоянная величина внутриглазного давления.

Также цилиарное тело служит опорой для радужки.

Хориоидея (Choroidea)

Область сосудистого тракта, расположенная сзади. Пределы этой оболочки ограничиваются зрительным нервом и зубчатой линией.
Параметр толщина заднего полюса составляет от 0,22 до 0,3 мм. При приближении к зубчатой линии происходит его уменьшение до 0,1–0,15 мм. Хориоидея в части сосудов состоит из цилиарных артерий, где задние короткие идут по направлению к экватору, а передние – к сосудистой оболочке, когда достигается соединение вторых с первыми в ее передней области.

Цилиарные артерии минуют склеру и достигают супрахориоидального пространства, ограниченного хориоидеей и склерой. Происходит распад на значительное число ветвей. Они становятся основой сосудистой оболочки. По периметру диска зрительного нерва образуется сосудистый круг Цинна – Галера. Иногда в области макулы может наличествовать дополнительная ветвь. Она видима или на сетчатке, или на ДЗН. Важный момент при эмболии центральной артерии сетчатки.



Сосудистая оболочка включает в себя четыре составляющих:
  • надсосудистая с темным пигментом;
  • сосудистая коричневатого оттенка;
  • сосудисто-капиллярная, поддерживающая работу сетчатки;
  • базальный слой.

Сетчатка глаза (ретина)

Сетчаткой является периферический отдел, запускающий в работу зрительный анализатор который играет важную роль в строении глаза человека. С его помощью улавливаются световые волны, производится их преобразование в импульсы на уровне возбуждения нервной системы и осуществляется дальнейшая передача информации посредством зрительного нерва.

Ретина – это нервная ткань, формирующая глазное яблоко в части его внутренней оболочки. Она ограничивает пространство, заполненное стекловидным телом. В качестве внешнего обрамления выступает сосудистая оболочка. Толщина сетчатки незначительная. Параметр, соответствующий норме, составляет лишь 281 мкм.

Поверхность глазного яблока изнутри в большей своей части покрыта ретиной. Началом сетчатой оболочки условно можно считать ДЗН. Далее она тянется до такой границы, как зубчатая линия. Затем преобразуется в пигментный эпителий, обволакивает внутреннюю оболочку ресничного тела и распространяется на радужку. ДЗН и зубчатая линия – это области, где крепление сетчатки наиболее надежное. В других местах ее соединение отличается небольшой плотностью. Именно этот факт объясняет то, что ткань легко отслаивается. Это провоцирует множество серьезных проблем.

Структура сетчатой оболочки формируется нескольким слоями, отличающимися разной функциональностью и строением. Они тесно соединены друг с другом. Образуется плотный контакт, обусловливающий создание того, что принято называть зрительным анализатором. Посредством его человеку предоставляется возможность правильного восприятия окружающего мира, когда производится адекватная оценка цвета, форм и размеров предметов, а также расстояния до них.


Лучи света при попадании в глаз проходят несколько преломляющих сред. Под ними следует понимать роговицу, глазную жидкость, прозрачное тело хрусталика и стекловидное тело. Если рефракция в пределах нормы, то в результате такого прохождения световых лучей на сетчатке формируется картинка объектов, попавших в поле зрения. Полученное изображение отличается тем, что оно перевернутое. Далее определенные части головного мозга получают соответствующие импульсы, и человек приобретает способность видеть то, что его окружает.

С точки зрения структуры ретина – максимально сложное образование. Все ее составляющие тесно взаимодействуют друг с другом. Она отличается многослойностью. Повреждение любого слоя способно привести к негативному исходу. Зрительное восприятие как функциональность сетчатки обеспечивается трех-нейронной сетью, проводящей возбуждения от рецепторов. Ее состав формируется за счет широкого набора нейронов.

Слои сетчатки

Ретина образует «сэндвич» из десяти рядов:


1. Пигментный эпителий , прилегающий к мембране Бруха. Отличается широкой функциональностью. Защита, клеточное питание, транспортировка. Принимает в себя отторгающие сегменты фоторецепторов. Служит барьером на пути светового излучения.


2. Фотосенсорный слой . Клетки, обладающие чувствительностью к свету, в виде своеобразных палочек и колбочек. В палочкоподобных цилиндрах содержится зрительный сегмент родопсин, а в колбочках – иодопсин. Первый обеспечивает цветоощущение и периферическое зрение, а второй – видение при слабой освещенности.


3. Пограничная мембрана (наружная). Структурно состоит из терминальных образований и наружных участков рецепторов ретины. Структура мюллеровских клеток за счет своих отростков делает возможным сбор света на сетчатке и его доставку к соответствующим рецепторам.


4. Ядерный слой (наружный). Получил свое название из-за того, что сформирован на основе ядер и тел светочувствительных клеток.


5. Плексиформный слой (наружный). Определяется контактами на уровне клеток. Возникают между нейронами, характеризуемыми как биполярные и ассоциативные. Сюда же относят и светочувствительные образования этого вида.


6. Ядерный слой (внутренний). Сформирован из разных клеток, например, биполярных и мюллеровских. Востребованность последних связана с необходимостью поддержания функций нервной ткани. Другие ориентированы на обработку сигналов от фоторецепторов.


7. Плексиформный слой (внутренний). Переплетение нервных клеток в части их отростков. Служит разделителем между внутренней частью сетчатки, характеризуемой как сосудистая, и наружной – бессосудистая.


8. Ганглиозные клетки . Обеспечивают свободное проникновение света ввиду отсутствия такого покрытия, как миелин. Являются мостом между светочувствительными клетками и зрительным нервом.


9. Ганглионарная клетка . Участвует в формировании зрительного нерва.


10. Пограничная мембрана (внутренняя). Покрытие ретины изнутри. Состоит из клеток Мюллера.

Оптическая система глаза

Качество зрения зависит от основных частей человеческого глаза. Состояние пропускающих в виде роговицы, сетчатки и хрусталика напрямую влияет на то, как будет видеть человек: плохо или хорошо.


Большее участие в преломлении лучей света принимает роговица. В этом контексте можно провести аналогию с принципом действия фотоаппарата. Диафрагма – это зрачок. С его помощью регулируется поток световых лучей, а фокусное расстояние задает качество изображения.

Благодаря хрусталику световые лучи попадают на «фотопленку». В нашем случае под ней следует понимать сетчатую оболочку.


Стекловидное тело и влага, находящаяся в глазных камерах, также преломляют световые лучи, но в значительно меньшей степени. Хотя состояние этих образований ощутимо сказывается на качестве зрения. Оно способно ухудшаться при снижении степени прозрачности влаги или появлении в ней крови.

Правильное восприятие окружающего мира через органы зрения предполагает, что проход световых лучей через все оптические среды приводит к формированию на сетчатке уменьшенного и перевернутого изображения, но реального. Заключительная обработка информации от зрительных рецепторов происходит в отделах головного мозга. За это отвечают затылочные доли.

Слезный аппарат

Физиологическая система, обеспечивающая выработку специальной влаги с последующим ее выводом в полость носа. Органы слезной системы классифицируются в зависимости от секреторного отдела и аппарата слезоотведения. Особенность системы заключается в парности ее органов.

Работа концевого отдела состоит в том, чтобы вырабатывать слезу. Его структура включает в себя слезную железу и добавочные образования подобного вида. Под первой понимается серозная железа, обладающая сложным строением. Подразделяется на две части (низ, верх), где в качестве разделительного барьера выступает сухожилие мышцы, отвечающей за подъем верхнего века. Область вверху в плане размера следующая: 12 на 25 мм при 5-миллиметровой толщине. Ее расположение определяется стенкой глазницы, имеющей направленность вверх и наружу. Эта часть включает в себя выводные канальцы. Их число варьируется от 3 до 5. Вывод осуществляется в конъюнктиву.

Что касается нижней части, то она обладает менее значительными размерами (11 на 8 мм) и меньшей толщиной (2 мм). У нее есть канальцы, где одни соединяются с такими же образованиями верхней части, а другие выводятся в конъюнктивальный мешок.


Обеспечение слезной железы кровью производится посредством слезной артерии, а отток организован в слезную вену. Тройничный лицевой нерв выступает в роли инициатора соответствующего возбуждения нервной системы. Также к этому процессу подключаются симпатические и парасимпатические нервные волокна.

В стандартной ситуации работают исключительно добавочные железы. Посредством их функциональности обеспечивается выработка слезы в объеме около 1 мм. Это обеспечивает требуемое увлажнение. Что касается основной слезной железы, то она вступает в действие при появлении разного рода раздражителей. Это могут быть инородные тела, слишком яркий свет, эмоциональный всплеск и т. д.

Структура слезоотводящего отдела основывается на образованиях, способствующих движению влаги. Также они отвечают за ее отвод. Такое функционирование обеспечивается благодаря слезному ручью, озеру, точкам, канальцам, мешку и носослезному протоку.

Упомянутые точки отлично визуализируются. Их расположение определяется внутренними углами век. Они ориентированы на слезное озеро и находятся в плотном соприкосновении с конъюнктивой. Установление связи между мешком и точками достигается посредством специальных канальцев, достигающих в длину 8–10 мм.

Расположение слезного мешка определяется костной ямкой, находящейся рядом с углом глазницы. С точки зрения анатомии это образование представляет собой закрытую полость цилиндрического вида. Она вытянута на 10 мм, а ее ширина составляет 4 мм. На поверхности мешка присутствует эпителий, имеющий в своем составе бокаловидный гландулоцит. Приток крови обеспечивается с помощью глазной артерии, а отток – мелких вен. Часть мешка внизу сообщается с носослезным каналом, выходящим в носовую полость.

Стекловидное тело

Вещество, похожее на гель. Заполняет глазное яблоко на 2/3. Отличается прозрачностью. Состоит на 99% из воды, имеющей в своем составе гиалоурановую кислоту.

В передней части находится выемка. Она прилегает к хрусталику. В остальном это образование контактирует с сетчатой оболочкой в части ее мембраны. ДЗН и хрусталик соотносятся посредством гиалоидного канала. Структурно стекловидное тело состоит из белка коллагена в виде волокон. Существующие промежутки между ними заполнены жидкостью. Это объясняет то, что рассматриваемое образование представляет собой студенистую массу.


По периферии располагаются гиалоциты – клетки, способствующие образованию гиалуроновой кислоты, белков и коллагенов. Также они участвуют в формировании белковых структур, известных как гемидесмосомы. С их помощью устанавливается плотная связь между мембраной сетчатки и самим стекловидным телом.


К главным функциям последнего относят:
  • придание глазу конкретной формы;
  • преломление световых лучей;
  • создание определенного напряжения в тканях органа зрения;
  • достижение эффекта несжимаемости глаза.

Фоторецепторы

Тип нейронов, входящих в состав сетчатой оболочки глаза. Обеспечивают обработку светового сигнала таким образом, что он преобразуется в электрические импульсы. Это запускает процессы биологического характера, приводящие к формированию зрительных образов. На практике фоторецепторные белки вбирают в себя фотоны, что насыщает клетку соответствующим потенциалом.

Светочувствительные образования – это своеобразные палочки и колбочки. Их функциональность способствует правильному восприятию объектов внешнего мира. В результате можно говорить об образовании соответствующего эффекта – зрения. Человек способен видеть за счет биологических процессов, протекающих в таких частях фоторецепторов, как внешние доли их мембран.

Еще существуют светочувствительные клетки, известные как глазки Гессе. Они находятся внутри пигментной клетки, обладающей чашеобразной формой. Работа этих образований заключается в улавливании направления лучей света и определении его интенсивности. С их помощью происходит обработка светового сигнала, когда на выходе получаются электрические импульсы.

Следующий класс фоторецепторов стал известен в 1990-х годах. Под ним подразумеваются светочувствительные клетки ганглиозного слоя сетчатой оболочки. Они поддерживают зрительный процесс, но в косвенной форме. Здесь подразумеваются биологические ритмы в течение суток и зрачковый рефлекс.

Так называемые палочки и колбочки с точки зрения функциональности существенно отличаются друг от друга. Например, первым присуща высокая чувствительность. Если освещение низкое, то именно они гарантируют формирование хоть какого-то зрительного образа. Этот факт дает понять, почему при недостаточной освещенности плохо различаются цвета. В этом случае активен лишь один тип фоторецепторов – палочки.


Для работы колбочек необходим более яркий свет, чтобы обеспечить прохождение соответствующих биологических сигналов. Строение сетчатки предполагает наличие колбочек разных типов. Всего их три. Каждый определяет фоторецепторы, настроенные на конкретную длину волн света.

За восприятие картинки в цвете отвечают отделы коры, ориентированные на обработку зрительной информации, что предполагает распознавание импульсов в формате RGB. Колбочки способны различать световой поток по длине волн, характеризуя их как короткие, средние и длинные. В зависимости от того, сколько фотонов способна поглотить колбочка, формируются соответствующие биологические реакции. Различные ответы этих образований базируются на конкретном количестве вобранных фотонов той или иной длины. В частности, фоторецепторные белки L-колбочек поглощают условный красный цвет, соотносимый с длинными волнами. Лучи света, имеющие меньшую длину, способны приводить к одному и тому же ответу в том случае, если они достаточно яркие.

Реакция одного и того же фоторецептора может провоцироваться волнами света различной длины, когда отличия наблюдаются и на уровне интенсивности светового потока. В результате мозг не всегда определяет свет и получаемую картинку. Посредством зрительных рецепторов происходит отбор и выделение максимально ярких лучей. Затем формируются биосигналы, поступающие в те отделы мозга, где происходит обработка информации такого вида. Создается субъективное восприятие оптической картинки в цвете.

Сетчатка глаза человека состоит из 6 млн колбочек и 120 млн палочек. У животных их количество и соотношение различно. Основное влияние оказывает образ жизни. У сов сетчатка содержит очень значительное количество палочек. Зрительная система человека – это почти 1,5 млн ганглиозных клеток. В их числе есть клетки, обладающие фоточувствительностью.

Хрусталик

Биологическая линза, характеризуемая с точки зрения формы как двояковыпуклая. Выступает в роли элемента светопроводящей и светопреломляющей системы. Обеспечивает возможность фокусировки на предметах, удаленных на разное расстояние. Расположен в задней камере глаза. Высота хрусталика составляет от 8 до 9 мм при его толщине от 4 до 5 мм. С возрастом происходит его утолщение. Этот процесс медленный, но верный. Передняя часть этого прозрачного тела обладает менее выпуклой поверхностью по сравнению с задней.

Форма хрусталика соотносится с двояковыпуклой линзой, имеющей радиус кривизны в передней части около 10 мм. При этом с обратной стороны этот параметр не превышает 6 мм. Диаметр хрусталика – 10 мм, а размер в передней части – от 3,5 до 5 мм. Содержащееся внутри вещество удерживается капсулой с тонкими стенками. Фронтальная часть имеет эпителиальную ткань, расположенную внизу. На задней стороне капсулы эпителия нет.

Эпителиальные клетки отличаются тем, что делятся постоянно, но это не сказывается на объеме хрусталика в плане его изменения. Такая ситуация объясняется обезвоживанием старых клеток, расположенных на минимальном удалении от центра прозрачного тела. Это способствует уменьшению их объемов. Процесс этого вида приводит к такой особенности, как возрастная . При достижении человеком 40-летнего возраста теряется эластичность хрусталика. Снижается резерв аккомодации, и возможность хорошо видеть на близком расстоянии существенно ухудшается.


Хрусталик размещен непосредственно за радужкой. Его удержание обеспечивают тонкие нити, образующие цинновую связку. Один их конец входит в оболочку хрусталика, а другой – закрепляется на цилиарном теле. Степень натяжения этих нитей влияет на форму прозрачного тела, что изменяет преломляющую силу. В итоге становится возможным процесс аккомодации. Хрусталик служит границей между двумя отделами: передним и задним.


Выделяют следующую функциональность хрусталика:
  • светопроводность – достигается за счет того, что тело этого элемента глаза прозрачное;
  • светопреломление – работает как биологическая линза, выступает в роли второй преломляющей среды (первая – роговица). В состоянии покоя параметр преломляющей силы составляет 19 диоптрий. Это норма;
  • аккомодация – изменение формы прозрачного тела в целях хорошего видения предметов, находящихся на разном удалении. Преломляющая сила в этом случае изменяется в диапазоне от 19 до 33 диоптрий;
  • разделение – образует два отдела глаза (передний, задний), что определяется особенностью расположения. Выступает в роли барьера, сдерживающего стекловидное тело. Оно не может оказаться в передней камере;
  • защита – обеспечивается биологическая безопасность. Болезнетворные микроорганизмы, оказавшись в передней камере, не способны проникнуть в стекловидное тело.

Врожденные заболевания в некоторых случаях приводят к смещению хрусталика. Он занимает неправильное положение из-за того, что связочный аппарата ослаблен или имеет какой-либо дефект строения. Сюда еще относят вероятность врожденных помутнений ядра. Все это способствует снижению зрения.

Циннова связка

Образование на основе волокон, определяемых как гликопротеиновые и зонулярные. Обеспечивает фиксацию хрусталика. Поверхность волокон покрыта мукополисахаридным гелем, что обусловливается потребностью в защите от влаги, присутствующей в камерах глаза. Пространство за хрусталиком служит местом, где находится это образование.

Активность цинновой связки приводит к сокращению цилиарной мышцы. Хрусталик изменяет кривизну, что позволяет фокусироваться на объектах, находящихся на разном удалении. Напряжение мышцы ослабляет натяжение, и хрусталик принимает форму, близкую к шару. Расслабление мышцы приводит к напряжению волокон, что сплющивает хрусталик. Фокусировка меняется.


Рассматриваемые волокна подразделяются на задние и передние. Одна сторона задних волокон крепится у зубчатого края, а другая – на фронтальной области хрусталика. Исходной точкой передних волокон служит основание цилиарных отростков, а крепление осуществляется в тыльной части хрусталика и ближе к экватору. Скрещенные волокна способствуют образованию по периферии хрусталика щелевидного пространства.

Крепление волокон на ресничном теле производится в части стекловидной мембраны. В случае отрыва этих образований констатируется так называемый вывих хрусталика, обусловленный его смещением.

Циннова связка выступает в качестве основного элемента системы, обеспечивающей возможность аккомодации глаза.

Видео

Внутренняя оболочка глаза – сетчатка (retina) играет роль периферического рецепторного отдела зрительного анализатора.

Сетчатка развивается, как уже было сказано, из выпячивания стенки переднего мозгового пузыря. Это дает основание рассматривать ее как истинную ткань моз­га, вынесенную на периферию.

Сетчатка выстилает всю внутреннюю поверхность сосудистой оболочки. Соот­ветственно структуре и функции в ней различают два отдела. Задние две трети сет­чатки представляют собой высокодифференцированную нервную ткань – зритель­ная часть сетчатки, которая простирается от зрительного нерва до зубчатого края.

Зрительная часть сетчатки соединена с подлежащими тканями в двух ме­стах – у зубчатого края и вокруг зрительного нерва. На остальном протяжении сетчатка прилежит к сосудистой оболочке, удерживается на своем месте давлени­ем стекловидного тела и достаточно интимной связью между палочками, колбоч­ками и отростками клеток пигментного слоя. Связь эта в условиях патологии легко нарушается и происходит отслойка сетчатки.

Место выхода зрительного нерва из сетчатки носит название диска зрительно­го нерва. На расстоянии около 4 мм кнаружи от диска зрительного нерва имеется углубление – так называемое желтое пятно, или макула.

Диск зрительного нерва Желтое пятно сетчатки

Толщина сетчатки около диска 0,4 мм, в области желтого пятна – 0,1-0,05 мм, у зубчатой линии – 0,1 мм.

Микроскопически сетчатка представляет собой цепь трех нейронов: наруж­ного – фоторецепторного, среднего – ассоциативного и внутреннего – ганглионарного. В совокупности они образуют 10 слоев сетчатки (рисунок 1.9): 1) слой пигментного эпителия; 2) слой палочек и колбочек; 3) наруж­ную глиальную пограничную мембрану; 4) наружный зернистый слой; 5) наруж­ный сетчатый слой; 6) внутренний зернистый слой; 7) внутренний сетчатый слой; 8) ганглионарный слой; 9) слой нервных волокон; 10) внутреннюю глиальную по­граничную мембрану. Ядерные и ганглионарные слои соответствуют телам нейро­нов, сетчатые – их контактам.

Рис. 1.9 Структура сетчатки (схема)

I – пигментный эпителий; II – слой пало­чек и колбочек; III – наружная глиальная пограничная мембрана; IV – наружный зернистый слой; V – наружный сетчатый слой; VI – внутренний зернистый слой; VII– внутренний сетчатый слой; VIII – ганглионарный слой; IX – слой нервных воло­кон; X – внутренняя глиальная пограничная мембрана; XI – стекловидное тело

Луч света, прежде чем попасть на светочувствительный слой сетчатки, должен пройти через прозрачные среды глаза: роговицу, хрусталик, стекловидное тело и всю толщу сетчатки. Палочки и колбочки фоторецепторов являются самыми глу­бокорасположенными частями сетчатки. Поэтому сетчатка глаза человека отно­сится к типу инвертированных.

Самым наружным слоем сетчатки является пигментный слой. Клетки пигмент­ного эпителия имеют форму шестигранных призм, расположенных в один ряд. Тела клеток заполнены зернами пигмента – фусцина, который отличается от пиг­мента сосудистой оболочки – меланина. Генетически пигментный эпителий при­надлежит сетчатке, но плотно спаян с сосудистой оболочкой.

Пигментный эпителий сетчатки

Изнутри к пигментному эпителию прилегают клетки нейроэпителия (пер­вый нейрон зрительного анализатора), отростки которого – палочки и колбоч­ки – составляют светочувствительный слой. Как по структуре, так и по физио­логическому значению эти отростки различаются между собой. Палочки имеют цилиндрическую форму, тонкие. Колбочки имеют форму конуса или бутылки, ко­роче и толще палочек.

Палочки и колбочки

Располагаются палочки и колбочки в виде палисада, нерав­номерно. В области желтого пятна находятся только колбочки. По направлению к периферии количество колбочек уменьшается, а палочек возрастает. Количество палочек значительно превосходит количество колбочек: если колбочек может быть до 8 млн., то палочек – до 170 млн.

Палочки и колбочки в сетчатке

Она очень сложна. В наружных члениках палочек и колбочек сосредоточены диски, осуществляющие фотохимические процессы, на что указывает повышен­ная концентрация родопсина в дисках палочек и йодопсина в дисках колбочек. К наружным сегментам палочек и колбочек прилежит скопление митохондрий, ко­торым приписывается участие в энергетическом обмене клетки. Палочконесущие зрительные клетки являются аппаратом сумеречного зрения, колбочконесущие клетки – аппаратом центрального и цветового зрения.

Колбочка (слева) и палочка (справа): 1 – пресинаптический контакт; 2 – ядро; 3 – липосомы; 4 – митохондрии; 5 – внутренний сегмент; 6 – наружный сегмент

Ядра палочко- и колбочконесущих зрительных клеток составляют наружный зернистый слой, который располагается кнутри от наружной глиальной погра­ничной мембраны.

Связь первого и второго нейронов обеспечивают синапсы, расположенные в наружном сетчатом, или плексиформном, слое. В передаче нервного импульса играют роль химические вещества – медиаторы (в частности, ацетилхолин), ко­торые накапливаются в синапсах.

Внутренний зернистый слой представлен телами и ядрами биполярных нейроцитов (второй нейрон зрительного анализатора). Эти клетки имеют два отростка: один из них направлен кнаружи, навстречу синаптическому аппарату фотосен­сорных клеток, другой – кнутри для образования синапса с дендритами оптико-ганглионарных клеток. Биполяры входят в контакт с несколькими палочковыми клетками, в то время как каждая колбочковая клетка контактирует с одной бипо­лярной клеткой, что особенно выражено в области пятна.

Внутренний сетчатый слой представлен синапсами биполярных и оптико-ганглионарных нейроцитов.

Оптико-ганглионарные клетки (третий нейрон зрительного анализатора) со­ставляют восьмой слой. Тело этих клеток богато протоплазмой, содержит крупное ядро, имеет сильно ветвящиеся дендриты и один аксон - цилиндр. Аксоны обра­зуют слой нервных волокон и, собираясь в пучок, формируют ствол зрительного нерва.

Поддерживающая ткань представлена нейроглией, пограничными мембрана­ми и межуточным веществом, которое имеет существенное значение в обменных процессах.

В области пятна строение сетчатки меняется. По мере приближения к цен­тральной ямке пятна (fovea centralis ) исчезает слой нервных волокон, затем слой оптико-ганглионарных клеток и внутренний сетчатый слой, и, наконец, внутрен­ний зернистый слой ядра и наружный ретикулярный. На дне центральной ямки сетчатка состоит лишь из колбочконесуших клеток. Остальные элементы как бы сдвинуты к краю пятна. Такое строение обеспечивает высокое центральное зре­ние.

Центральная ямка желтого пятна

В статье рассмотрим строение глаза и виды оболочек.

Человек видит посредством глаз. Информация поступает через зрительный нерв, хиазму, зрительные тракты в затылочные доли коры головного мозга. Здесь происходит формирование картины внешнего мира. Так устроен наш зрительный анализатор или зрительная система.

Поскольку у нас 2 глаза, наше зрение стереоскопичное (то есть изображение трехмерное). Правая сторона сетчатки глаза передает часть изображения через зрительный нерв в правую сторону головного мозга, аналогично и с левой стороной. Затем две части изображения — правая и левая — соединяются воедино.

Оболочкой глаза называют среднюю часть зрительного органа, размещенную непосредственно в районе под склерой. Это мягкая, богатая сосудами пигментированная ткань, ее основными свойствами выступают аккомодация наряду с адаптацией и питанием сетчатки. Глаз человека является поразительной биологической оптической системой. Фактически, линзы, которые заключены сразу в несколько оболочек, дают возможность человеку увидеть окружающий мир объемным и цветным.

Строение оболочек глаза

Глаз у человека состоит сразу из трех оболочек, а кроме того, из двух камер, из стекловидного тела и хрусталика, которые занимают большую часть внутреннего глазного пространства. На самом деле строение данного шарообразного зрительного органа во многом похоже на сложный фотоаппарат. Нередко сложная структура глаза называется глазным яблоком. Оболочками органа не только удерживается внутренняя структура в заданной форме, но также осуществляется участие в сложных процессах аккомодации и снабжении питательными веществами.

Каково же строение оболочек глаза? Общепринято все слои глазных яблок разделять на три вида:

  • Фиброзный, а по-другому его еще называют наружной оболочкой глаза. Она состоит на 5/6 из непрозрачных клеток (это склера) и на 1/6 из прозрачных (речь идет о роговице).
  • Имеется также сосудистая оболочка глаза, которая делится на три части, а именно на радужку, на сосудистую ткань и на ресничное тело.
  • Сетчатка у человека состоит из целых одиннадцати слоев, одним из которых служат палочки и колбочки. С их помощью люди могут различать предметы.

Названия оболочек глаза не всем известны. Далее рассмотрим более детально каждую из них.

Фиброзная внешняя оболочка

Это, прежде всего, внешний слой клеток, покрывающий глазное яблоко. Он служит опорой и одновременно защитой для внутренних составляющих.

Рассмотрим строение оболочки глаза. Передняя часть этого наружного слоя является роговицей прочной, прозрачной и вогнутой. Это не просто оболочка, но еще и линза, которая преломляет видимый свет. Роговицу относят к тем частям глаза, которая хорошо видна и формируется из специальных прозрачных клеток эпителия. Задняя часть фиброзной оболочки глаза является склерой, состоящей из плотных клеток, к которым прикреплено шесть мышц, поддерживающих глаза (четыре прямые и две косые).

Склера является непрозрачной, плотной, по цвету белой, напоминающей белок яйца. Из-за этого ее называют белочной оболочкой. На границе между склерой и роговицей есть венозный синус. Им обеспечивается отток из глаза венозной крови. В роговице кровеносные сосуды отсутствуют, а на задней части в склере (там, где проходит зрительный нерв) имеется так называемая решетчатая пластинка. Через ее отверстия пролегают кровеносные сосуды, питающие глаз. Толщина каждого фиброзного слоя, как правило, колеблется от 1,1 миллиметра по краям роговицы (в центральной части она 0,8 миллиметров) до 0,4 миллиметров склеры в районе зрительного нерва. На границе с роговицей склера будет толще до 0,6 миллиметров. Далее поговорим о возможных повреждениях фиброзной глазной оболочки.

Повреждения фиброзной оболочки

Среди заболеваний и травм фиброзного слоя зачастую встречают:

  • Возникновение повреждения роговицы (конъюнктивов), это может оказаться царапиной, ожогом, кровоизлиянием и так далее.
  • Попадание инородного тела на роговицу (будь то ресницы, песчинки, более крупный предмет и так далее).
  • Развитие воспалительных процессов, к примеру, конъюнктивит. Нередко патология имеет инфекционный характер.
  • Среди болезней склеры весьма распространена стафилома. При этой патологии понижается способность склеры к растяжению.
  • В особенности частым выступает эписклерит, являющийся покраснением и припухлостью, вызванной воспалением поверхностного слоя.

Воспалительный процесс в склере обычно носит вторичный характер и вызван деструктивным процессом в прочих структурах глаза либо извне. Диагностика патологии роговицы, как правило, для медиков не представляет труда, так как степень повреждений офтальмолог определяет визуально. В ряде ситуаций требуются дополнительный анализ на выявление инфекций. Теперь узнаем о том, что представляет собой сосудистая глазная оболочка.

Сосудистая оболочка

Внутри между внутренним и внешним слоем располагается средняя сосудистая оболочка глаза, состоящая из радужки, а кроме того, из хориоидеи и цилиарного тела. Назначение данного слоя определяют как питание, защита и аккомодация:

  • Радужная глазная оболочка является своеобразной диафрагмой зрительного органа человека, она не просто принимает участие в образовании изображения, но и защищает сетчатку от ожогов. При наличии яркого света радужкой сужается пространство, и человек видит маленькую точку зрачка. Чем будет меньше света, тем шире окажется зрачоки радужка. Ее цвет напрямую зависит от числа клеток меланоцитов, к тому же он определяется генетически.
  • Цилиарное тело расположено за радужкой, им поддерживается хрусталик. Именно благодаря ему хрусталику удается очень быстро растягиваться, реагируя на свет и преломляя лучи. Ресничное тело принимает участие в продуцировании водянистой влаги для внутренней камеры глаза. Еще одним его предназначением является регуляция температурного режима непосредственно внутри глаза.
  • Остальную часть оболочки занимает хориоидея. Собственно, это и есть сосудистая оболочка, состоящая из большого числа кровеносных сосудов. Ею выполняются функции питания внутренней структуры глаз. Строение хориоидеи таково: снаружи расположены более крупные сосуды, а непосредственно внутри мелкие, а уже на самой границе находятся капилляры. Еще одной функцией ее выступает амортизация неустойчивых внутренних структур.

Расположением оболочек глаза интересуются многие пациенты.

Сосудистая оболочка снабжена большим числом пигментных клеток, поэтому она может препятствовать прохождению света внутрь глаза, тем самым устраняя рассеивание света. Толщина сосудистых слоев составляет от 0,2 до 0,4 миллиметров в районе цилиарного тела и только от 0,1-0,14 - близ зрительного нерва. Далее выясним, какие повреждения можно наблюдать в сосудистой глазной оболочке.

Повреждение и дефекты

Наиболее часто встречается болезнь под названием увеит (это воспаление сосудистой оболочки). Нередко встречается хориоидеит, сочетающийся с различного рода повреждениями сетчатки, к примеру, с хориоретинитом. Более редко встречаются следующие заболевания:

  • Появление дистрофии хориоидеи.
  • Развитие отслойки сосудистой оболочки, являющееся заболеванием, возникающим при перепаде внутриглазного давления, к примеру, при офтальмологической операции.
  • Появление разрывов в результате травмы и удара либо из-за кровоизлияния.
  • Возникновение опухолей, невуса.
  • Колобомы, что представляет собой полное отсутствие данной оболочки на определенном районе (это является врожденным дефектом).

Диагностику заболеваний проводят офтальмологи. Диагноз ставят в результате проведенного комплексного обследования.

Что еще входит в строение оболочек глаза?

Внутренняя сетчатка

Сетчатая оболочка у людей является сложной структурой, состоящей из одиннадцати слоев нервных клеток. Ею не захватывается передняя камера глаза, и она располагается за хрусталиком. Верхний слой составляется из светочувствительных клеток - из колбочек и палочек.

Абсолютно все эти слои являются сложной системой. В них происходит восприятие световой волны, которая проецируется на сетчатку и хрусталик. Благодаря нервным клеткам сетчатки они могут преобразовываться в нервный импульс. А далее эти нервные сигналы могут передаваться в мозг человека. Это является сложным и очень быстрым процессом.

Очень важную роль в этом процессе играет макула, ее второе название - это желтое пятно. Здесь осуществляется преобразование зрительного образа наряду с обработкой первичных данных. Макула в ответе за центральное зрение на фоне дневного света. Она является очень неоднородной оболочкой. Так, близ диска зрительного нерва ею достигается 0,5 миллиметра, тогда как в пределах ямочки желтого пятна - всего 0,07, а в центральном районе - до 0,25.

Повреждения внутренней глазной сетчатки

Среди повреждений оболочки глаза человека на бытовом уровне очень часто встречаются ожоги из-за катания на горных лыжах без использования защитных средств. Частыми являются следующие заболевания, такие как:

  • Ретинит, являющийся воспалением оболочки, возникающим в качестве инфекционного (гнойная инфекция, сифилис) либо аллергического заболевания. Часто на фоне недуга наблюдается покраснение оболочки глаза.
  • Отслоение сетчатки, возникающее на фоне истощения и разрыва сетчатки.
  • Появление макулярной дегенерации, в рамках которой поражаются центральные клетки, то есть макулы. Это основная причина утраты зрения среди пациентов, которым старше пятидесяти лет.
  • Развитие дистрофии сетчатки, являющееся заболеванием, затрагивающим в основном пожилых людей. Оно напрямую связано с истончением слоя сетчатки, поначалу его диагностика сильно затруднена.
  • Появление кровоизлияния в сетчатку также может быть результатом старения организма.
  • Развитие диабетической ретинопатии. Развивается через десять-двенадцать лет после заболевания диабетом, поражает сетчатку и ее нервные клетки.
  • Не исключено и появление опухолевых образований на сетчатой оболочке.

Диагностика патологий сетчатки потребует не просто специальной аппаратуры, но и выполнения дополнительных обследований. Терапия заболеваний сетчатого глазного слоя у пожилых людей обычно имеет осторожный прогноз. При этом заболевания, вызванные воспалениями, имеют более благоприятные прогнозы, чем те, которые связаны с процессом старения организма.

Каковы функции оболочек глаза?

Зачем человеку нужна слизистая глазная оболочка?

Глазное яблоко у человека находится в специальной орбите и надежно закрепляется. Большая часть его спрятана, а непосредственно световые лучи пропускает лишь 1/5 поверхности. Сверху данный участок глазного яблока закрывается веками, которые при открытии образуют щель, посредством которой проходит свет. Веки у людей оборудованы ресницами, которые защищают от пыли и внешнего воздействия. Ресницы с веками являются наружной оболочкой глаз.

Слизистая оболочка зрительного органа человека называется конъюнктивой. Веки изнутри выстланы слоем специальных эпителиальных клеток, образующих розовый слой. Данный слой нежного эпителия, собственно, и называют конъюнктивой. Клетки конъюнктивы в себе содержат слезные железы. Продуцируемая ими слеза не просто увлажняет роговицу, предотвращая ее пересыхание, но к тому же содержит питательные и бактерицидные вещества для роговицы.

Конъюнктива имеет кровеносные сосуды, которые соединяющиеся с капиллярами лица, и обладает лимфатическими узлами, служащими форпостами для инфекций. Благодаря всем этим оболочкам глаза человека надежно защищены, получают необходимое питание. Кроме этого, оболочки глаза принимают участие в процессах аккомодации и преобразований полученной информации. Появление заболевания или же других поражений глазных оболочек могут провоцировать потерю остроты зрения.

Строение радужной оболочки глаза

Радужная оболочка зрительных органов представляет собой две категории мышц. Мышцы, относящиеся к первой категории, находятся вокруг зрачков, от их работы напрямую зависит их сокращение. Вторая группа расположена радиально по всей толщине радужки, она в ответе за расширение зрачков. Радужка состоит из следующих слоев (их еще называют листами):

  • Из пограничного (переднего) слоя.
  • Из стромального слоя.
  • Из пигментного мышечного (заднего) слоя.

В том случае, если внимательно посмотреть спереди на радужку, то можно легко различать определенные детали всего ее строения. Самым высоким местом являются брыжи, благодаря которым она как бы разделяется на две части, а именно на внутреннюю зрачковую и цилиарную наружную долю. По обе стороны брыжей непосредственно на поверхности радужки располагаются лакуны или крипты, являющиеся щелевидными бороздками. Толщина глазной радужки варьируется от 0,2 до 0,4 миллиметров. У зрачковых краев радужная оболочка во много раз толще, чем на периферии.

Строение глаза человека уникально.

Цвет радужки и ее функции

От работы ее мышц напрямую зависит ширина световых потоков, проникающих через зрачок внутрь глаз непосредственно к сетчатке. Дилататор является мышцей, отвечающей за расширение зрачка. Сфинктер выступает мышцей, благодаря которой зрачки суживаются.

Тем самым осуществляется поддержка освещенности на нужном уровне. Наличие слабого освещения может вызывать расширение зрачков, тем самым увеличивается общий поток света. На процесс работы мышц радужной оболочки оказывает влияние общее психическое, а вместе с тем и эмоциональное состояние человека наряду с медикаментами.

Радужная оболочка является непрозрачным слоем, обладающим цветом, зависящим от особого пигмента - меланина. Последнее, как правило, передается людям по наследству. Новорожденные дети зачастую обладают радужкой голубого цвета. Это считается последствием слабой пигментации. Но зато спустя полгода количество пигментных клеток начинает быстро увеличиваться, и цвет у глаз может заметно изменяться.

Кроме этого, в природе встречают полное отсутствие в радужной оболочке меланина. Люди, которые лишены пигментов не просто в радужке, но и в кожном и волосяном покрове, называются альбиносами. Еще реже в природе можно встретить явление гетерохромии, при этом цвет одного глаза будет отличаться от другого.

Мы рассмотрели строение глаза человека.