Вирус табачной мозаики: что такое и как бороться? Вирусные болезни растений: типы болезней, характеристика патогенов Влияние вирусов на растения.

Перенос вирусной инфекции может быть осуществлен механическим поражением растений и внесением сока с ним, прививкой части больных растений на здоровые, а также при помощи насекомых.

Заражение часто происходит уже при самом ничтожном поранении. Например, для заражения табака вирусом мозаики достаточно наличия обломленного волоска этого растения.

В зараженном растении частицы вируса распространяются совершенно пассивно с пластическими веществами, вырабатываемыми листьями. Скорость распространения вируса в растении зависит от скорости тока питательных веществ и строения растительных тканей. В паренхимных тканях вирус перемещается медленно, не превышая 0,01 мм в час. Переход вирусных частиц из клетки в клетку осуществляется по протоплазменным нитям, соединяющим клетки между собой. Во флоэме перемещение вируса совершается более быстро и измеряется сантиметрами в час (1,25 см в час для табачной мозаики).

В природе распространение вируса осуществляется следующими способами:

  1. механической передачей с соком больных растений;
  2. с растительными остатками, в которых вирус сохраняет активность;
  3. передачей через почву;
  4. с вегетативными частями и органами растений;
  5. с семенами;
  6. насекомыми.

Роль насекомых . Среди различных способов распространения вирусов преимущественное значение имеют насекомые. Некоторые ученые считают, что насекомым в распространении вирусов принадлежит главная роль. Большинство насекомых - переносчиков вирусных болезней имеет сосущий ротовой аппарат (тли, цикады, щитовки, трипсы). С помощью тонкого стилета насекомое прокалывает растительные клетки, не вызывая быстрой их гибели, и вносит вирус в растительные клетки.

Наибольшую роль в распространении вирусов играют тли и цикады. Тли - неспецифичные переносчики, так как тли каждого вида могут переносить вирусов нескольких видов и, наоборот, вирусы некоторых видов переносятся тлями многих видов. Например, персиковая тля переносит вирусы 21 вида, а желтуху лука переносят тли 53 видов. Цикады - обычно строго специфичные переносчики. Закукливание злаков передается только темной цикадой, а мозаика пшениц - полосатой.

Отношения между вирусными болезнями и цикадами довольно сложные. Цикады, питающиеся на зараженном растении, не сразу приобретают инфекционность, а только через определенный промежуток времени, в течение которого вирус проходит длинный путь в теле насекомого. Это время от момента питания насекомого соком больного растения до способности его заражать здоровое растение называется инкубационным периодом и измеряется различными сроками; например, для вируса курчавости верхушек сахарной свеклы - 4 ч, а мозаики озимой пшеницы - 18 дней. Что касается сохранения вируса в организме насекомого, то такие вирофорные цикады могут потом заражать растения в течение нескольких дней, недель, а иногда и в течение всей своей жизни.

Передача через почву , в которой находятся зараженные растительные остатки, доказано для значительного количества вирусов (вирус некроза табака, розеточность озимой пшеницы, желтая мозаика винограда и др.). Проникновение вируса в клетки растения происходит через поранения, возникающие на корнях в результате роста, междурядной обработки, почвенными насекомыми. Некоторые вирусы сохраняют инфекционность в почве длительное время.

Например, вирус мозаики озимой пшеницы сохраняется в почве в активной форме в течение 6 лет, а возможно, значительно дольше.

Передача вирусов через семена зараженных растений встречается довольно редко. Возможность такой передачи доказана для обыкновенной мозаики фасоли и сои, желтухи вишни и др. болезней. Вирус может находиться на поверхности семян, откуда попадает на всходы (вирус табачной мозаики), а также внутри семян, в клетках зародыша (вирус мозаики фасоли и сои). В последнем случае из зараженного семени вырастает больное растение.

При вегетативном размножении пораженных растений вирусы, как правило, передаются потомству. Все вирусные болезни картофеля передаются с клубнями, вирусные болезни свеклы - с корнями, у многолетних растений в распространении вирусных болезней огромную роль играет посадочный материал (черенки, отводки, молодые деревья и т. п.). В посадочном материале происходит перезимовка и сохранение вируса. В перезимовке вирусов большую роль играют зимующие и многолетние сорняки. Например, вирус закукливания злаков может перезимовывать в корневищах пырея, а вирусы пасленовых - в зимующих розетках белены.

Механическая передача вируса с соком имеет место при немногих вирусных болезнях. Это происходит в результате механических повреждений пораженных и здоровых растений руками или инструментами во время работы по уходу за растениями, или во время уборки урожая, а также во время прививок. Например, вирус табачной мозаики легко переносится от больных растений к здоровым при проведении таких агротехнических приемов, как пикировка рассады, высадка ее в грунт, при подвязке растений, пасынковании и т. д. При проведении таких работ сок из случайно пораненных клеток больных растений попадает на руки рабочих и при дальнейшем контакте может быть внесен в повреждаемые таким же способом клетки здоровых растений, вызывая их заражение.

Условия развития растений оказывают большое влияние на распространение и степень поражения их вирусными болезнями. Из экологических факторов наибольшее влияние оказывает питание, а также температура и освещение.

Основным решающим фактором, под влиянием которого растения быстрее или медленнее развиваются, становятся более устойчивыми или восприимчивыми к болезням, является питание. По некоторым данным американских ученых, избыток азотного питания стимулирует размножение вирусов в растениях и приводит к увеличению числа пятен на листьях табака, пораженного вирусом мозаики. Калий в малых количествах повышает, а в больших количествах снижает восприимчивость растений, не оказывая заметного влияния на их рост.

Температура на вирусные болезни оказывает большое влияние, определяя сезонное и географическое распространение их. Вирусные болезни картофеля, например, наиболее распространены и вредоносны в южных областях, где, до недавнего времени, эти болезни называли «вырождением» картофеля. У разных вирусов влияние температуры на симптомы и степень поражения сказывается по-разному. Сравнительно высокие температуры благоприятны для некоторых вирусов картофеля, например морщинистая мозаика, желтая карликовость, а также мозаики капусты и др. В некоторых случаях при действии высокой температуры на ткани растения происходит уменьшение вируса и даже полная потеря его инфекционных свойств (инактивация). Температурная инактивация вируса в зараженных семенах нашла практическое применение в борьбе с вирусными болезнями табака. При прогревании семян до 85-90° С в течение 3-4 ч в них полностью инактивируется вирус пестрицы и на 50% - вирус гравировки табака (Грушевой С. Е. и др.).

Свет может оказать большое влияние на жизнедеятельность вируса, на выраженность симптомов и интенсивность поражения растений вирусными болезнями. В зараженных листьях табака, выдерживаемого в темноте, вирус табачной мозаики размножается медленнее, чем при нормальном освещении. Но непродолжительное затемнение растений с последующим освещением стимулирует размножение вируса. Различие в интенсивности освещения растений оказывается на их поражаемости вирусными болезнями. Например, в условиях теплицы со слабым освещением наблюдается сильное Поражение растений табака вирусом некроза, а летом - лишь в редких случаях. Вирус кустистости и карликовости томатов зимой в тепличных условиях - весьма вредоносные заболевания, вызывающие гибель растений томатов, а летом это относительно малоопасные болезни.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Болезни вызываются вирусами (от латинского слова virus -- яд) -- мельчайшими возбудителями инфекционных заболеваний растений и животных. Они настолько малы, что проходят сквозь бактериальные фильтры, за что и получили название фильтрующих вирусов.

Вирусы могут размножаться только в живых клетках восприимчивого хозяина, но долго, иногда несколько десятков лет, сохраняются в мертвых, сухих растительных остатках и в почве, не теряя жизнеспособности.

Вирусы очень широко распространены в природе, и вызываемые ими заболевания наносят большой вред. Вирусы гораздо менее специализированы, чем грибы и бактерии. Один и тот же вирус может вызывать болезни у многих видов растений.

Передается вирусная инфекция от растения к растению различными путями: механическим поражением растения и внесением зараженного сока, например, при пересадке, пикировке или подвязке растений, прививкой больных растений на здоровые, то есть при всех работах с растениями, когда сок зараженного растения может попасть на руки цветовода, а при дальнейшем контакте -- на здоровые растения.

Источником опасности являются также насекомые -- тли, цикады, щитовки, трипсы. Эти насекомые, имеющие сосущий ротовой аппарат, прокалывают с помощью стилета растительные клетки, не вызывая быстрой их гибели, и вносят вирус в растение.

Симптомы вирусных болезней очень разнообразны, некоторые из них напоминают симптомы грибных и бактериальных болезней, а также болезней неинфекционного характера (увядание растений, некрозы тканей и другие). Это осложняет диагностику вирусных болезней, и иногда для их точного определения требуется проведение специальных исследований.

Однако в ряде случаев болезни, вызываемые вирусами, имеют своеобразные симптомы, которые объединяют в две большие группы: мозаики и желтухи (рис. 19).

Мозаика характеризуется неравномерной расцветкой пораженных органов (листьев), чередованием темно-зеленых и светло-зеленых участков или пятен разной величины и формы. Мозаичная расцветка часто имеет различные узоры: дуги, кольца, полоски, черточки, извилистые линии. При некоторых болезнях мозаичная расцветка обнаруживается на лепестках. Кроме изменения окраски, нередко происходит деформация листовой пластинки: морщинистость, курчавость, нитевидность. Мозаика проявляется в распаде хлоропластов, что ведет к ослаблению фотосинтеза, а затем к отмиранию отдельных клеток и участков ткани.

Мозаичные болезни могут вызывать отставание в росте, но резко выраженной задержки роста не наблюдается. В зависимости от типа вируса симптомы могут проявляться более или менее ярко. При хорошем уходе и постоянных подкормках растения могут маскировать симптомы заболевания -- лишь ил молодых листьях видна характерная мозаичность.

Желтухи характеризуются равномерным обеднением листьев хлорофиллом, из-за чего они приобретают желтоватую или светлую окраску -- общий хлороз. В листьях накапливается много крахмала, поэтому они становятся более жесткими и хрупкими, в некоторых случаях при сжатии не мнутся, а ломаются с хрустом. При поражении желтухой наблюдаются сильная задержка роста и развития растения и различные уродства цветков.

Вирусные болезни типа желтухи часто поражают преимущественно сосудистую систему растений, вызывают гипертрофию ситовидных трубок, омертвение клеток, в результате чего задерживается отток питательных веществ, вырабатываемых листьями, и клетки забиваются крахмалом. Вирусные желтухи сильнее угнетают растение, чем мозаики, поскольку пораженными оказываются не отдельные органы (листья, лепестки), а вся сосудистая система.

Вирусы и вироиды постоянно присутствуют в растениях, и их вредоносность проявляется, как правило, в стрессовых ситуациях, приобретая хозяйственное значение только при инфицировании агрессивными штаммами. Растения самостоятельно могут защищаться от многих вирусов, но результат этой борьбы проявляется в виде точечных или обширных некрозов, мозаик, деформаций. В результате ухудшается качество продукции и снижается урожайность.
Химические способы борьбы с вирозами пока недостаточно хорошо разработаны, т. к. размножение вирусов настолько тесно связано с обменом веществ растения-хозяина, что непосредственное избирательное воздействие какими-либо препаратами на самого патогена отрицательно отражается и на астительной клетке. Поэтому защита от вирусов сводится скорее к предупреждению заболеваний, вакцинации слабопатогенными штаммами вирусов или к снижению темпов развития вирусных эпифитотий различными агротехническими приёмами.
На практике применяют следующие способы борьбы с вирусными и вироидными заболеваниями:
1. При вегетативном размножении проводят периодическую прочистку посадок маточных растений. Этот метод эффективен для борьбы с патогенами с хорошо выраженными симптомами.
2. Тщательное обследование растений и удаление больных частей (фитосанитарная прочистка) в период всходов, начала цветения и начала плодоношения.
3. Термотерапия позволяет резко снизить заражённость, а иногда и полностью избавить растения от ряда термолабильных вирусов. Этот метод можно использовать как для обеззараживания вегетативных органов, так и для борьбы с инфекцией внутри семян. Температурные режимы строго пецифичны и рассматриваются ниже в соответствующих разделах.
4. Использование метода культивирования апикальных меристем позволяет избавиться от большинства возбудителей вирозов. Против вироидов метод малоэффективен. Лучший эффект оздоровления от вирусных инфекций получают при комбинировании метода культуры верху шечных меристем с предварительной термотерапией или химиотерапией, при которой в пита тельную среду для культивирования меристем вводят антивирусные добавки (гликопротеины, полисахариды, рибонуклеазы, аналоги и производные азотистых оснований, антибиотики) или обрабатывают ими исходные растения-доноры меристем.
5. Борьба с растениями-резерваторами вирусов и с переносчиками инфекции.
6. Сокращение запаса вирусов в объектах окружающей среды (в семенах и в самих растениях).
7. Стимулирование у растений неспецифического иммунитета: с помощью индукторов устойчивости (элиситоров), регуляторов роста и т. д.
8. Преиммунизация, или вакцинация. Известно, что вирулентные штаммы не вызывают симптомов заболевания, если растение предварительно было заражено слабопатогенным или авирулентным штаммом родственного вируса. Подобная вакцинация использовалась в теплицах для защиты неустойчивых к ВТМ сортов и гибридов томата. Но метод преиммунизации не получил широкого применения на практике из-за возможности мутирования патогена, усиления его вредоносности при совместном заражении с другими патогенами и из-за ряда других причин. Однако в последние годы получены хорошие вакцины не только к ВТМ, но и к вирусу зелёной крапчатой мозаики огурца (Андреева и др., 2000).
9. Селекция на вирусоустойчивость с последующим использованием иммунных сортов и гибридов. При этом селекционную работу следует проводить не только по признаку устойчивости к вирусу, но, желательно, и к его переносчику. Не меньшее значение имеет получение толерантных (выносливых) сортов, в которых системное распространение вирусов ограниченно, понижена их концентрация. Толерантность зачастую приводит к бессимптомному течению заболевания, при этом продуктивность растений практически не снижается.
10. Создание трансгенных растений. Изменение генома растений за счёт включения новых генов устойчивости, полученных от доноров. При введении в клетки табака гена, отвечающего за синтез белка оболочки вируса табачной мозаики, появляется устойчивость этому заболеванию. Так, трансгенные кабачки, несущие гены вирусных оболочек жёлтой мозаики кабачка и мозаики арбуза, не имели симптомов поражения вирусами, тогда как контрольные растения и трансгенные растения с одним геном имели явные повреждения (Аветисов, 1999). Проведённые полевые испытания устойчивых к вирусам растений томата, картофеля и многих других культур, полученных при использовании такого подхода, показали его эффективность и перспективность дальнейших исследований в этой области.
11. Государственный (внешний) и внутрихозяйственный (внутренний) карантин. При импорте растений в карантинном сертификате должно быть подтверждено, что материал не содержит карантинных объектов. Соответственно, внутренний карантин предполагает локализацию и уничтожение очагов заболеваний, зарегистрированных в качестве карантинных. Эффективность мероприятий внешнего и внутреннего карантина в значительной мере зависит от надежности и быстроты методов идентификации вирусов.
12. Организационно-хозяйственные мероприятия включают дезинфекцию режущих инструментов и орудий труда в дезинфицирующих растворах (формалин, перманганат калия, спирт) или их тепловую обработку, т. к. многие экономически значимые вирусы передаются контактным путём; работа в сменной обуви и одежде; размещение дезковриков перед входом в теплицу; регулярное визуальное обследование растений.
13. Ослабление симптомов заболевания за счёт поддержания оптимального режима выращивания культуры, в том числе минерального питания. В период развития эпифитотий растения опрыскивают растворами микроэлементов, фосфорными и калийными удобрениями, которые стимулируют ускоренное прохождение растением фаз онтогенеза и как следствие - наступление возрастной устойчивости.
Последние три способа вместе являются основой профилактических мероприятий.

А можно как–нибудь избавиться от вирусов?

Коль скоро стало очевидным, что вирусные болезни наносят ощутимый ущерб растениеводству, возник естественный вопрос: нельзя ли как–то вылечить заболевшие растения? Если само растение неспособно избавиться от угнетающих его вирусов, так нельзя ли ему в этом помочь?

Выяснилось, что можно, и существует два основных приема, позволяющих добиться этой целй,.

Приемов–то, конечно, больше. Есть, например, такие способы, как негативный и позитивный отбор. В первом случае выбраковывают явно зараженные растения, оставляя на развод только внешне здоровые. Во втором отбирают только здоровые и их используют для размножения. Приемы хорошие, да вот беда – вирусное заболевание часто протекает настолько скрытно, что невооруженным глазом его не углядишь. Кроме того, многие ценные сорта заражены настолько, что любой отбор становится бессмысленным.

Но выход есть. Давно замечено, что вирус распределяется по зараженному растению неравномерно, и, что важно, не проникает в самую верхушку побега, которая называется точкой роста, или верхушечной (апикальной) меристемой. Кусочек побега, свободный от вируса, обычно очень мал, меньше миллиметра, но, тем не менее, его можно разглядеть и вырезать. Эту операцию производят под бинокулярной лупой в стерильных условиях, как и положено при операции. Можно, конечно, отсечь кусочек покрупнее, но тогда значительно возрастает риск захвата клеток, содержащих вирус, и вся работа пойдет насмарку. Нетрудно отрезать и совсем маленький кусочек, который почти наверняка окажется безвирусным, но очень маленькие меристемы плохо приживаются, так что всегда приходится искать какую–то золотую середину.

1 безвирусное растение, выращиваемое в пробирке; 2 верхушечная почка. Линия показывает место разреза

Отрезанный кусочек побега помещают в стеклянную пробирку на поверхность стерильной питательной среды, состоящей из сахаров, солей и гормонов роста. Из него довольно быстро, скажем, за месяц, вырастет полноценное растение с корнями и листьями. Его можно пересадить в почву, где оно будет нормально развиваться. Часто проводят дополнительную операцию. Выросшее пробирочное растение черенкуют, то есть разрезают стебель,на несколько частей, прихватывая пазушную почку. Так из одной меристемы, если она благополучно прижилась, можно получить несколько тысяч растений. Например, от одного исходного растения винограда за год можно получить до 160 тысяч оздоровленных растений. Поскольку вырастили его из куска побега, а не из семян, растение сохранит все сортовые свойства, а вируса в нем не будет.

Второй способ еще проще. Издавна человек выгоняет всяческую хворь, попарившись в баньке. Оказалось, что нечто подобное можно придумать и для оздоровления растений. Вначале использовали водолечение, при котором целые растения или их отдельные части в виде черенков, отводков или усов погружали в воду, нагретую до температуры 35–60 градусов. Время погружения составляет от нескольких минут до нескольких суток и зависит от термостойкости культуры и вируса. Впервые такую процедуру проделали в Японии еще в 1899 году на корневых отпрысках сахарного тростника. Впоследствие таким путем были возрождены ценные сорта малины, земляники, винограда и многих других культур.

Сейчас чаще используют воздушную термообработку, при которой активно растущее растение помещают на несколько недель в камеру с температурой воздуха от 35 до 40 градусов с постоянным освещением. Горячий воздух меньше повреждает растения, чем горячая вода. Без освещения никак нельзя, если растение находится в состоянии активного роста. Сферические вирусы разрушаются быстро, но вирусы с палочковидными и нитевидными частицами переносят эту процедуру без серьезных потерь. Однако, скорость их распространения по растению все же замедляется, отставая от прироста побега. Поэтому обычно сразу по окончании прогревания у обработанных растений срезают верхушки побегов, которые оздорав лившотся в первую очередь, и прививают их на безвирусные подвои или просто укореняют. Особенно хорошие результаты термотерапия дает на плодовых культурах. Но растения по–разному переносят "сауну". Например, для оздоровление хрена от вируса черной кольцевой пятнистости капусты обработку подогретым до 37–40 градусов воздухом проводят в термокамерах с постоянным освещением в течение от 60 до 100 дней. При этом выживает только половина растений, и только часть из них освобождается от вирусов. Зато тополю прогревание нравится. Во всяком случае, обработка тополя для удаления вируса мозаики при переменных температурах – 40 градусов днем и 20 градусов ночью – вызывает просто безудержный рост побегов.

В странах с очень жарким климатом растения могут освобождаться от вирусов естественным путем. В Индии собранные клубни картофеля хранят полгода при температуре до 36 градусов, и вирус скручивания листьев разрушается от индийской жары сам собой, в то время как в клубнях, хранящихся по всем правилам в охлаждаемых хранилищах, вирус выживает. Еще хуже переносит жару вирус некротической кольцевой пятнистости косточковых. При температуре воздуха выше 25 градусов вирус перестает размножаться и накапливаться в зараженном растении, однако не исчезает совсем и при понижении температуры проявляется с новой силой. Это обстоятельство можно использовать. Из–за летней жары большая часть почек сливы, зараженной вирусом некротической кольцевой пятнистости, оказывается расположенной у основания побегов, а ближе к верхушке и периферии кроны число зараженных почек уменьшается. Таким образом, в августе часто оказывается возможным вычленять не крохотную меристему, а использовать – что, конечно же, совсем другое дело – полноценную почку, естественным образом оздоровленную от вируса.

Все эти методы оздоровления растений от вирусов широко применяются в современном растениеводстве. Сформировалась целая отрасль сельского хозяйства, называемая безвирусным растениеводством. Целью безвирусного растениеводства является производство оздоровленого от вирусов посевного и посадочного материала. Получение здорового посадочного материала, своевременная диагностика вирусных инфекций и защитные мероприятия против повторного заражения оздоровленных культур вирусами – вот три кита, на которых базируется эта отрасль. Абсолютно четко доказано, что комплексное применение этих мер позволяет заметно повысить урожайность сельскохозяйственных культур и качество сельскохозяйственной продукции.

Из книги Энциклопедия безопасности автора Громов В И

4. ЗАЩИТА ОТ КОМПЬЮТЕРНЫХ ВИРУСОВ Компьютерный вирус - это специально написанная небольшая по размерам программа, которая может «приписывать» себя к другим программам (т. е. «заражать» их), а также выполнять различные нежелательные действия на компьютере. Программа,

Из книги Античная мифология. Энциклопедия автора Королев Кирилл Михайлович

Глава 2 «МОЖНО ЖДАТЬ ЧЕГО УГОДНО, МОЖНО ВЕРОВАТЬ ВСЕМУ»: семейная и государственная мифология античности Стойте в молчанье кругом: освящаем поля мы и жатву, Чинный свершая обряд, древле завещанный нам. Вакх, снизойди, и с рожек твоих да склоняются грозди, Ты же, Церера,

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Энциклопедический словарь крылатых слов и выражений автора Серов Вадим Васильевич

Мы все учились понемногу, / Чему-нибудь и как-нибудь Из романа в стихах «Евгений Онегин» (1823-1831) А. С. Пушкина (1799- 1837), гл. 1, строфа 5: Мы все учились понемногу, Чему-нибудь и как-нибудь, Так воспитаньем, слава Богу, У нас немудрено блеснуть. Шутливо-иронически: о дилентатстве,

Из книги Странности нашего тела – 2 автора Джуан Стивен

Поели - можно и поспать. Поспали - можно и поесть Из мультфильма «Дюймовочка» (1964). Режиссер-постановщик Л. Амальрик, сценарий драматурга Николая Робертовича Эрдмана (1902-1970).В мультфильме (слова Лягушки, обращенные к ее сыну Лягушонку, который хотел жениться на

Из книги Семейный вопрос в России. Том II автора Розанов Василий Васильевич

Можно ли как-нибудь ускорить рост волос на лице? (Спрашивает Родни Томпсон, Цинциннати, Огайо, США)Этот вопрос часто задают подростки. Им хочется побыстрее начать бриться, чтобы выглядеть взрослее. Парни, не торопитесь, скоро все придет само собой. Бритье еще надоест вам за

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

О наказании смертью и еще, сверх этого, чем-нибудь О древнерусском разводе Ценные слова Напрасное обременение (о вторых и третьих браках) Опыт самозащиты "Внеканонические", а не "внебрачные "Внебрачные дети" - contradictio in adjecto Сколько раз можно было вступать в брак в древней

Из книги Я познаю мир. Вирусы и болезни автора Чирков С. Н.

Из книги Компьютерные террористы [Новейшие технологии на службе преступного мира] автора Ревяко Татьяна Ивановна

Из книги Как я устроен автора Романовская Диана

Нуклеиновые кислоты вирусов Молекулы нуклеиновых кислот состоят из отдельных звеньев – нуклеотидов, соединенных между собой в длинные нити. В зависимости от структуры нуклеотидов, из которых они состоят, нуклеиновые кислоты бывают двух типов: дезоксирибонуклеиновая

Из книги автора

Из книги автора

Происхождение вирусов Жан Эффель в своей книге "Сотворение мира" утверждает, что вирусы созданы дьяволом. Нельзя не признать, что для этой точки зрения есть все основания.Говоря всерьез, вопрос о том, как возникли вирусы, далек от разрешения и, возможно, никогда не будет

Из книги автора

Раздел II. Разработчики вирусов Действие равно противодействию - этот закон Ньютона мы помним еще со школы. Наверное, потому, что он вдруг оказывается справедливым не только для механики, а даже для информатики. Массовое внедрение персональных компьютеров принесло с

Из книги автора

«Рождение» вирусов История компьютерного вируса, как правило, это сведения о месте и времени создания (первого обнаружения) вируса; информация о личности создателя (если это достоверно известно); предполагаемые «родственные» связи вируса; сведения, полученные из

Из книги автора

Провайдеры против вирусов Много хлопот доставляет провайдерам Internet почтовый хлам (spam), в огромных количествах пересылаемый по Сети. Но существует проблема и посерьезнее - это вирусописатели, анонимно рассылающие вирусы в e-mail и сеющие свои ядовитые семена в

Из книги автора

Атака вирусов Дело было так. На меня напали вирусы – маленькие вредные и коварные существа. Они похожи на пауков, только очень, очень мелких: меньше пылинок. Их можно увидеть лишь в мощнейший микроскоп. Целая армия вирусов с тысячами бойцов проникла в мой нос. И,

Не все знают, что у растений тоже есть свои вирусы. Они вызывают, например, скручивание и пожелтение листьев, карликовость, листовую мозаику. А для человека эти вирусы совершенно безвредны. В последние годы учёные стали широко использовать растительные вирусы для производства фармацевтических белков.

История открытия вирусов начинается как раз с заболеваний растений. В конце XIX века российский ботаник Дмитрий Ивановский изучает в Крыму мозаичное заболевание табака. При этом заболевании на листьях появляются жёлтые пятна. Заболевшие растения малопригодны для использования в табачной промышленности. Иначе говоря, табачная мозаика может нанести ощутимый экономический ущерб. Как, кстати, и многие другие вирусные болезни растений. Ивановский обнаружил удивительную для понятий того времени особенность возбудителя мозаики табака. Ведь Луи Пастер со своими опытами уже общеизвестен, Роберт Кох открыл бациллу сибирской язвы, холерный вибрион и туберкулёзную палочку. В эти годы бактериология пышно расцветает.

В 1884 году Шарль Шамберлен изготовил специальные фильтры. Они задерживали все известные к тому времени бактерии. Жидкости, проходящие через эти фильтры, становились стерильными. Ивановский решает пропустить через эти фильтры сок заболевших растений табака. Удивительно, но неизвестный возбудитель мозаики табака фильтром не задерживался. В 1892 году Ивановский публикует результаты своих исследований. Не зная природу возбудителя болезни, он предполагает, что это фильтрующаяся бактерия или бактериальный токсин. В 1898 году голландец Мартин Бейеринк, тоже изучавший табачную мозаику, приходит к выводу, что имеет дело с инфекционным агентом нового типа. Бейеринк называет его «вирусом» от латинского слова «яд». Таким было начало вирусологии. В течение последующего десятилетия были открыты фильтрующиеся вирусы ящура, жёлтой лихорадки, оспы, бешенства, полиомиелита. Потом учёные узнали, что вирусные частицы состоят из белковой оболочки, внутри которой находится ДНК или РНК. Кстати, позже выяснилось, что существуют и фильтрующиеся бактерии – такие маленькие, что могут проходить через фильтр. Но всё это было потом. Первым открытым вирусом был растительный вирус табачной мозаики.

Люди сталкивались с вирусами растений и прежде. В классическом японском стихотворении, написанном в восьмом веке, говорится о растении посконник (Eupatorium) с типичными симптомами вирусного заболевания. На картинах голландских живописцев XVII века изображены тюльпаны пёстрых и мозаичных расцветок – и это тоже вирус. Но только в последние пару десятилетий учёные научились использовать эти вирусы. Царство вирусов многообразно. Есть огромные мимивирусы, сравнимые по размерам и числу генов с маленькими бактериями. Есть вирусы маленькие, с простым геномом. И вирусы растений как раз относятся чаще всего к последним. А это значит, что с ними работать генным инженерам удобно. Можно легко сделать на основе вирусов растений векторы с модифицированными генами. Такие рекомбинантные вирусы, попадая в растение, производят не только свои обычные белки, но и, например, фармацевтические.

Обычный набор генов вирусов растений, в том числе и вируса табачной мозаики, состоит всего из трёх функциональных групп. Первая группа отвечает за синтез нуклеиновых кислот вируса (ДНК или РНК). Вторая группа обеспечивает продукцию структурных белков, которые будут упаковывать геном вируса в частицу сферической, палочкообразной или иной формы. Чаще всего это единственный белок оболочки вируса. У вируса табачной мозаики геномная РНК упаковывана в палочку из примерно двух тысяч субъединиц этого белка. Наконец, последняя, третья группа генов обеспечивает передвижение вирусных частиц по растению. Интересно, что от растения к растению вирус переходит пассивно: с помощью насекомых или в соке через микроповреждения, возникающие, когда растения трутся друг о друга. А вот попав так в растительную клетку, дальше вирусы распространяются активно, с помощью своих специальных белков. Одни белки позволяют переходить вирусу от одной клетке к другой и, размножаясь там, постепенно захватывать весь лист. Другие (часто это структурные белки) помогают вирусу заразить сразу всё растение. Они отвечают за транспорт на длинные дистанции – вирус через сосуды растения, по которым обычно движутся вода и минеральные соли, попадает сначала в корни, потом – в самую верхушку, а потом и во все листья. То есть теоретически даже одна вирусная частица, случайно попав в растение, размножаясь там, способна за короткое время заполонить своими копиями все клетки растительного организма.

И именно это свойство вирусов растений – способность активно воспроизводиться во всём растении после первичного заражения всего одного листа – используется биотехнологами. С помощью методов генной инженерии в специально модифицированный вирусный геном вставляется ген какого-нибудь интересного белка. Для модельных опытов обычно используют зелёный флуоресцирующий белок, который светится в темноте под ультрафиолетом. В этом эксперименте за распространением вируса по растению легко наблюдать по яркому зелёному свечению. Вирус (обычно только синтезированную геномную РНК с нужными модификациями) механически вносят в растение осторожным натиранием одного листа. Он начинает там размножаться и синтезировать свои белки. В заражённом вирусом растении всегда в очень большом количестве синтезируются субъединицы белка оболочки. Поэтому как раз регулирующие элементы для синтеза этого белка удваиваются исследователями в рекомбинантном геноме вируса, и под контроль одного набора из двух ставится ген интересного учёным белка, а под контролем второго остаётся белок оболочки. Это приводит к эффективному синтезу нужного продукта. Который, когда вирус захватит всё растение, предстоит ещё выделить и очистить.

Какие же особенности и ограничения есть у этой системы производства фармацевтических белков? Уже известно, что геном вирусов растений не любит, когда вставляемые в него чужеродные гены очень большие. Лучше всего с помощью вирусных векторов синтезируются относительно маленькие белки. Если же размер гена превышает две тысячи нуклеотидов, то уровень его экспрессии невелик, а рекомбинации, то есть выщепление вставки из генома и возвращение вируса к дикому типу, происходят часто. Зато может осуществиться интересная идея производства вакцин в съедобных растениях. В этой модели к белку оболочки вируса генноинженерно присоединяется определённый полипептид-антиген. Тогда вирусная частица будет покрыта тысячами этих одинаковых антигенов, торчащих наружу. Заразив какое-нибудь съедобное растение этим вирусом, подождав, пока его будет там много, можно будет съесть это растение и получить иммунитет к серьёзному заболеванию, совместив приятное с полезным.