От наследственных болезней можно избавиться. Можно ли избежать наследственных заболеваний? Что дают знания о генетической природе заболевания

Мы согласны подарить детям свою не слишком блестящую внешность и невыдающиеся мозги. Даже допускаем у наследника немного оттопыренные уши. Но вот чего бы нам, ни при каких условиях не хотелось передать малышу, так это какое-нибудь заболевание. Можно ли избежать «плохого наследства»? Ведь наследственные болезни человека, их профилактика и лечение зачастую избегаются при помощи некоторых средств.
Научный подход
Объективно говоря, от данного риска не застрахован ни один родитель. Каждый из нас несет в себе в среднем ю-12 дефектных генов, которые мы получили от своих родных и, возможно, передадим собственным детям. Сегодня науке известно около 5000 наследственных заболеваний, которые развиваются из-за неполадок в генетическом аппарате человека - в генах или хромосомах.
Они подразделяются на три основные группы: моногенные, полигенные и хромосомные.
Сегодня практически любую патологию можно объяснить с точки зрения генетики. Хронический тонзиллит - наследственным дефектом иммунитета, желчнокаменную болезнь - наследственным нарушением обмена веществ.

Виды заболеваний

Моногенные болезни обусловлены дефектом одного гена. На сегодня известно порядка 1400 таких болезней. Хотя распространенность их невысока (5-10 % от общего числа наследственных болезней), полностью они не исчезают. Среди наиболее распространенных в России - муковисцидоз, фенилкетонурия, адреногенитальный синдром, га-лактоземия. Для выявления перечисленных патологий все новорожденные в нашей стране проходят специальные анализы (к сожалению, проверить малышей на наличие всех дефектных генов не может ни одна страна мира). Если выявляется отклонение, младенца переводят на специальную диету, которую надо соблюдать до ю-12, а иногда и до 18 лет. Если же у больных родителей рождаются здоровые дети, то все потомство последних будет «без дефекта».
Полигенные (или мультифакторные) болезни связаны с нарушением взаимодействия нескольких генов, а также факторами окружающей среды. Это самая многочисленная группа - включает около 90 % всех наследственных болезней человека их профилактики и последующего лечения.

Пути передачи

Основной передатчик болезни - больные мама или папа. Если заболеванием страдают оба, риск возрастает в несколько раз. Вместе с тем, даже если вы с супругом здоровы, в вашем организме присутствует ряд дефектных генов. Просто они подавлены нормальными и «молчат». В случае, если у вас с мужем один и тот же «молчащий» ген, у ваших детей может развиться наследственная болезнь.
Своя особенность наследования есть у болезней, «сцепленных с полом», - гемофилии, болезни Гюнтера. Их контролируют гены, которые находятся в половой хромосоме. Родители больного некоторые виды онкологии, пороки развития (в том числе заячья губа и волчья пасть). В ряде случаев родители передают не саму болезнь, а предрасположенность к ней (сахарный диабет, ишемическая болезнь сердца, алкоголизм). Дети получают неблагоприятную комбинацию генов, которая в определенных условиях (стресс, серьезная травма, плохая экология) может привести к развитию болезни. Причем чем сильнее выражено заболевание у мамы или папы, тем выше риск.
Хромосомным наследственным болезням человека, их профилактике и лечению уделяется огромное количество времени и сил, они возникают из-за изменения числа и структуры хромосом. Например, самая известная аномалия - болезнь Дауна - является следствием утроения 2 хромосомы. Подобные мутации не так редки, они встречаются у 6-ю из новорожденных. Другие распространенные заболевания - синдромы Тернера, Эдвардса, Патау. Все они характеризуются множественными пороками: задержкой физического развития, умственной отсталостью, пороками сердечнососудистой, мочеполовой, нервной и других систем. Лечение хромосомных аномалий еще не найдено.
ребенка могут быть здоровы, но, если мама является носительницей мутантного гена, вероятность рождения больного мальчика составляет 5° %. Девочки рождаются здоровыми, но половина из них, в свою очередь, становятся носительницами дефектного гена. Больной отец не передает болезнь сыновьям. Дочери же могут заболеть, только если и мать является носительницей.
Из египетской гробницы
Фараона Эхнатона и царицу Нефертити древние изображали с довольно нестандартной внешностью. Оказывается, дело не только в художественном видении живописцев. По неестественно удлиненной, «башенной» форме черепа, маленьким глазам, ненормально длинным конечностям (так называемые «пальцы паука»), невыраженному подбородку («птичье лицо») ученые опознали синдром Минковского-Шафара - один из наследственных видов анемии (малокровия).
Из русской истории
Нарушение свертываемости крови (гемофилия) у сына последнего русского царя Николая II царевича Алексея тоже наследственной природы. Эта болезнь передается по материнской линии, но проявляется исключительно у мальчиков. Скорее всего, первой обладательницей гена гемофилии стала королева Великобритании Виктория, прабабка Алексея.
Сложности выявления
Наследственные заболевания не всегда проявляются с самого рождения. Некоторые виды умственной отсталости становятся заметны только тогда, когда ребенок начнет говорить или пойдет в школу. А вот хорею Геттингтона (разновидность прогрессирующей умственной отсталости) вообще можно распознать только после до лет.
Кроме того, подводными камнями способны стать и «молчащие» гены. Их действие может проявиться в течение жизни - под влиянием негативных внешних факторов (нездоровый образ жизни, прием ряда лекарственных препаратов, радиация, загрязнение окружающей среды). Если ваш малютка попадает в группу риска, вы можете пройти молекулярно-генетическое обследование, которое поможет выявить вероятность развития заболевания в каждом конкретном случае. Далее специалист может назначить меры профилактики. Если же больные гены оказываются доминирующими, избежать заболевания невозможно. Можно лишь облегчить симптомы болезни. Еще лучше - постараться их предупредить до момента родов.

Миодистрофия Дюшенна — одно из нечасто встречающихся, но все же относительно распространенных генетических заболеваний. Болезнь диагностируется в трех-пятилетнем возрасте, обычно у мальчиков, проявляясь поначалу лишь в затрудненных движениях, к десяти годам страдающий такой миодистрофией уже не может ходить, к 20−22 годам его жизнь заканчивается. Она вызвана мутацией гена дистрофина, который находится в Х-хромосоме. Он кодирует белок, соединяющий мембрану мышечной клетки с сократительными волокнами. Функционально это своеобразная пружина, обеспечивающая плавное сокращение и целостность клеточной мембраны. Мутации в гене приводят к дистрофии скелетных мышечных тканей, диафрагмы и сердца. Лечение заболевания носит паллиативный характер и позволяет лишь немного облегчить страдания. Однако с развитием генной инженерии появился свет в конце тоннеля.

О войне и мире

Генная терапия — это доставка внутрь клетки конструкций на основе нуклеиновых кислот для лечения генетических заболеваний. С помощью такой терапии можно исправить генетическую проблему на уровне ДНК и РНК, меняя процесс экспрессии нужного белка. Например, в клетку можно доставить ДНК с исправленной последовательностью, с которой синтезируется функциональный белок. Или, напротив, возможны удаления определенных генетических последовательностей, что также поможет уменьшить вредные последствия мутации. В теории это просто, однако на практике генная терапия базируется на сложнейших технологиях работы с объектами микромира и представляет собой совокупность передовых ноу-хау в области молекулярной биологии.


Инъекция ДНК в пронуклеус зиготы — одна из самых ранних и наиболее традиционных технологий создания трансгенов. Инъекция производится вручную с помощью сверхтонких игл под микроскопом с 400-кратным увеличением.

«Ген дистрофина, мутации которого порождают миодистрофию Дюшенна, огромный, — рассказывает директор по развитию биотехнологической компании «Марлин Биотех», кандидат биологических наук Вадим Жерновков. — Он включает в себя 2,5 млн пар нуклеотидов, что можно было бы сравнить с количеством букв в романе «Война и мир». И вот представим себе, что мы вырвали из эпопеи несколько каких-то важных страниц. Если на этих страницах описываются существенные события, то понимание книги было бы уже затруднено. Но с геном все сложнее. Найти другую копию «Войны и мира» несложно, и тогда недостающие страницы можно было бы прочитать. Но ген дистрофина находится в X-хромосоме, а у мужчин она одна. Таким образом, в половых хромосомах у мальчиков при рождении хранится лишь одна копия гена. Другую взять негде.


Наконец, при синтезе белка из РНК важно сохранение рамки считывания. Рамка считывания определяет, какая группа из трех нуклеотидов считывается как кодон, что соответствует одной аминокислоте в белке. Если произошло удаление в гене фрагмента ДНК, не кратное трем нуклеотидам, происходит сдвиг рамки считывания — кодировка изменяется. Это можно было бы сравнить с ситуацией, когда после вырванных страниц во всей оставшейся книге все буквы заменятся на следующие по алфавиту. Получится абракадабра. Вот то же самое происходит с неправильно синтезируемым белком».

Биомолекулярный пластырь

Один из эффективных методов генной терапии для восстановления нормального синтеза белка — пропуск экзонов с помощью коротких нуклеотидных последовательностей. В «Марлин Биотех» уже отработана технология работы с геном дистрофина с помощью такого метода. Как известно, в процессе транскрипции (синтеза РНК) сначала формируется так называемая прематричная РНК, заключающая в себе как кодирующие белок участки (экзоны), так и некодирующие (интроны). Далее начинается процесс сплайсинга, в ходе которого интроны и экзоны разъединяются и формируется «зрелая» РНК, состоящая только из экзонов. В этот момент некоторые экзоны можно заблокировать, «залепить» с помощью особых молекул. В итоге в зрелой РНК не окажется тех кодирующих участков, от которых мы предпочли бы избавиться, и таким образом восстановится рамка считывания, белок будет синтезироваться.


«Эту технологию мы отладили in vitro, — рассказывает Вадим Жерновков, то есть на клеточных культурах, выращенных из клеток пациентов с миодистрофией Дюшенна. Но отдельные клетки — это не организм. Вторгаясь в процессы клетки, мы должны наблюдать последствия вживую, однако привлечь к испытаниям людей не представляется возможным по разным причинам — от этических до организационных. Поэтому возникла необходимость получения модели миодистрофии Дюшенна с определенными мутациями на основе лабораторного животного».

Как уколоть микромир

Трансгенные животные — это полученные в лаборатории животные, в геном которых целенаправленно, осознанно внесены изменения. Еще в 70-е годы прошлого века стало понятно, что создание трансгенов — это важнейший метод исследования функций генов и белков. Одним из самых ранних методов получения полностью генно-модифицированного организма стала инъекция ДНК в пронуклеус («предшественник ядра») зигот оплодотворенных яйцеклеток. Это логично, так как модифицировать геном животного проще всего в самом начале его развития.


На схеме продемонстрирован процесс CRISPR/Cas9, в котором участвуют субгеномная РНК (sgRNA), ее участок, работающий как РНК-гид, а также белок-нуклеаза Cas9, который рассекает обе нити геномной ДНК в указанном РНК-гидом месте.

Инъекция в ядро зиготы — весьма нетривиальная процедура, ведь речь идет о микромасштабах. Яйцеклетка мыши имеет диаметр 100 мкм, а пронуклеус — 20 мкм. Операция происходит под микроскопом с 400-кратным увеличением, однако инъекция — это самая что ни на есть ручная работа. Разумеется, для «укола» применяется не традиционный шприц, а специальная стеклянная игла с полым каналом внутри, куда набирается генный материал. Один ее конец можно держать в руке, а другой — сверхтонкий и острый — практически не виден невооруженным глазом. Конечно, такая хрупкая конструкция из боросиликатного стекла не может храниться долго, поэтому в распоряжении лаборатории есть набор заготовок, которые непосредственно перед работой вытягиваются на специальном станке. Используется особая система контрастной визуализации клетки без окрашивания — вмешательство в пронуклеус само по себе травматично и является фактором риска для выживания клетки. Краска стала бы еще одним таким фактором. К счастью, яйцеклетки достаточно живучи, однако количество зигот, которые дают начало трансгенным животным, составляют лишь несколько процентов от общего числа яйцеклеток, в которые была сделана инъекция ДНК.

Следующий этап — хирургический. Проводится операция по трансплантации микроинъецированных зигот в воронку яйцевода мыши-реципиента, которая станет суррогатной матерью будущим трансгенам. Далее лабораторное животное естественным путем проходит цикл беременности, и на свет появляется потомство. Обычно в помете находится около 20% трансгенных мышат, что также говорит о несовершенстве метода, ибо в нем присутствует большой элемент случайности. При инъекции исследователь не может контролировать, как именно внедренные фрагменты ДНК встроятся в геном будущего организма. Высока вероятность таких комбинаций, которые приведут к гибели животного еще на эмбриональной стадии. Тем не менее метод работает и вполне годен для ряда научных целей.


Развитие трансгенных технологий позволяет производить животные белки, востребованные фармацевтической промышленностью. Эти белки экстрагируются из молока трансгенных коз и коров. Также есть технологии получения специфических белков из куриного яйца.

Ножницы для ДНК

Но есть более эффективный способ на основе целевого редактирования генома по технологии CRISPR/Cas9. «Сегодня молекулярная биология в чем-то подобна эпохе дальних морских экспедиций под парусами, — говорит Вадим Жерновков. — Практически каждый год в этой науке происходят значительные открытия, которые могут изменить нашу жизнь. Например, несколько лет назад микробиологи обнаружили у давно, казалось бы, изученного вида бактерий иммунитет к вирусным инфекциям. В результате дальнейших исследований выяснилось, что ДНК бактерий содержат в себе особые локусы (CRISPR), с которых синтезируются фрагменты РНК, умеющие комплементарно связываться с нуклеиновыми кислотами чужеродных элементов, например с ДНК или РНК вирусов. С такой РНК связывается белок Cas9, представляющий собой фермент-нуклеазу. РНК служит для Cas9 гидом, помечающим определенный участок ДНК, в котором нуклеаза совершает разрез. Примерно три-пять лет назад появились первые научные труды, в которых разрабатывалась технология CRISPR/Cas9 для редактирования генома».


Трансгенные мыши позволяют создавать живые модели тяжелых генетических заболеваний человека. Люди должны быть благодарны этим крохотным существам.

По сравнению со способом введения конструкции для случайного встраивания, новый метод позволяет подобрать элементы системы CRISPR/Cas9 таким образом, чтобы точно нацелить РНК-гиды на нужные участки генома и добиться целенаправленной делеции или вставки нужной последовательности ДНК. В этом методе тоже возможны ошибки (РНК-гид иногда соединяется не с тем участком, на который его нацеливают), однако при использовании CRISPR/Cas9 эффективность создания трансгенов составляет уже около 80%. «Этот метод имеет широкие перспективы, и не только для создания трансгенов, но и в других областях, в частности в генной терапии, — говорит Вадим Жерновков. — Однако технология находится только в начале пути, и представить себе, что в ближайшее время исправлять генный код людей будут с помощью CRISPR/Cas9, довольно сложно. Пока есть вероятность ошибки, есть и опасность, что человек лишится какой-то важной кодирующей части генома».


Молоко-лекарство

Российской компании «Марлин Биотех» удалось создать трансгенную мышь, в которой полностью воспроизведена мутация, приводящая к миодистрофии Дюшенна, и следующим этапом станут испытания технологий генной терапии. Вместе с тем создание моделей генетических заболеваний человека на основе лабораторных животных — не единственное возможное применение трансгенов. Так, в России и западных лабораториях ведутся работы в области биотехнологий, позволяющие получать важные для фарминдустрии лекарственные белки животного происхождения. В качестве продуцентов могут выступать коровы или козы, у которых можно изменять клеточный аппарат производства содержащихся в молоке белков. Из молока можно экстрагировать лекарственный белок, который получен не химическим способом, а с помощью природного механизма, что повысит эффективность лекарства. В настоящее время разработаны технологии получения таких лекарственных белков, как лактоферрин человека, проурокиназа, лизоцим, атрин, антитромбин и другие.

От родителей ребенок может приобрести не только определенный цвет глаз, рост или форму лица, но и передающиеся по наследству. Какие они бывают? Как можно их обнаружить? Какая классификация существует?

Механизмы наследственности

Прежде, чем говорить о заболеваниях, стоит разобраться, что такое Вся информация о нас содержится в молекуле ДНК, которая состоит из невообразимо длинной цепочки аминокислот. Чередование этих аминокислот уникально.

Фрагменты цепочки ДНК называются генами. В каждом гене заключается целостная информация об одном или нескольких признаках организма, которая передается от родителей детям, например, цвет кожи, волос, черта характера и т. д. При их повреждении или нарушении их работы возникают генетические заболевания, передающиеся по наследству.

ДНК организовано в 46 хромосомах или 23 парах, одна из которых является половой. Хромосомы отвечают за активность генов, их копирование, а также восстановление при повреждениях. В результате оплодотворения в каждой паре присутствует одна хромосома от отца, а другая от матери.

При этом один из генов будет доминантным, а другой рецессивным или подавляемым. Упрощенно, если у отца ген, отвечающий за цвет глаз, окажется доминантным, то ребенок унаследует этот признак именно от него, а не от матери.

Генетические заболевания

Передающиеся по наследству болезни возникают, когда в механизме хранения и передачи генетической информации происходят нарушения или же мутации. Организм, чей ген поврежден, будет передавать его своим потомкам точно так же, как и здоровый материал.

В том случае, когда патологический ген является рецессивным, он может и не проявляться у следующих поколений, но они будут его переносчиками. Шанс, что не проявится, существует, когда здоровый ген тоже окажется доминантным.

В настоящее время известно больше 6 тысяч наследственных заболеваний. Многие из них проявляются после 35 лет, а некоторые могут никогда не заявить о себе хозяину. С крайне высокой частотой проявляется сахарный диабет, ожирение, псориаз, болезнь Альцгеймера, шизофрения и другие расстройства.

Классификация

Генетические заболевания, передающиеся по наследству, имеют огромное количество разновидностей. Для разделения их на отдельные группы может учитываться локация нарушения, причины, клиническая картина, характер наследственности.

Болезни могут классифицироваться по типу наследования и локации дефектного гена. Так, важно, расположен ген в половой или неполовой хромосоме (аутосоме), а также является он подавляющим или нет. Выделяют заболевания:

  • Аутосомно-доминантные - брахидактилия, арахнодактилия, эктопия хрусталика.
  • Аутосомно-рецессивные - альбинизм, мышечная дистония, дистрофия.
  • Ограниченные полом (наблюдаются только у женщин или мужчин) - гемофилия А и Б, цветовая слепота, паралич, фосфат-диабет.

Количественно-качественная классификация наследственных болезней выделяет генные, хромосомные и митохондриальные виды. Последний относится к нарушениям ДНК в митохондриях за пределами ядра. Первые два происходят в ДНК, которая находится в ядре клетки, и имеют несколько подвидов:

Моногенные

Мутации или отсутствие гена в ядерной ДНК.

Синдром Марфана, адреногенитальный синдром у новорожденных, нейрофиброматоз, гемофилия А, миопатия Дюшенна.

Полигенные

Предрасположенность и действие

Псориаз, шизофрения, ишемическая болезнь, цирроз, бронхиальная астма, сахарный диабет.

Хромосомные

Изменение структуры хромосом.

Синдромы Миллера-Диккера, Вильямса, Лангера-Гидиона.

Изменение числа хромосом.

Синдромы Дауна, Патау, Эдвардса, Клайфентера.

Причины возникновения

Наши гены склонны не только накапливать информацию, но и изменять её, приобретая новые качества. Это и есть мутация. Происходит она довольно редко, примерно 1 раз на миллион случаев, и передается потомкам, если произошла в половых клетках. Для отдельных генов частота мутации составляет 1:108.

Мутации являются естественным процессом и составляют основу эволюционной изменчивости всех живых существ. Они могут быть полезными и вредными. Одни помогают нам лучше приспособиться к окружающей среде и способу жизни (например, противопоставленный большой палец руки), другие приводят к заболеваниям.

Возникновение патологий в генах учащают физические, химические и биологические Таким свойством обладают некоторые алкалоиды, нитраты, нитриты, некоторые пищевые добавки, пестициды, растворители и нефтяные продукты.

Среди физических факторов находятся ионизирующие и радиоактивные излучения, ультрафиолетовые лучи, чрезмерно высокие и низкие температуры. В качестве биологических причин выступают вирусы краснухи, кори, антигены и т. д.

Генетическая предрасположенность

Родители влияют на нас не только воспитанием. Известно, что одни люди имеют больше шансов появления некоторых заболеваний, чем другие из-за наследственности. Генетическая предрасположенность к заболеваниям возникает, когда кто-то из родственников имеет нарушения в генах.

Риск возникновения конкретного заболевания у ребенка зависит от его пола, ведь некоторые болезни передаются только по одной линии. Он также зависит от расы человека и от степени родства с больным.

Если у человека с мутацией рождается ребенок, то шанс унаследования болезни будет 50%. Ген вполне может никак себя не проявить, будучи рецессивным, а в случае брака со здоровым человеком, его шансы передаться потомкам составят уже 25%. Однако если супруг тоже будет владеть таким рецессивным геном, шансы проявления его у потомков снова увеличатся до 50 %.

Как выявить болезнь?

Вовремя обнаружить заболевание или предрасположенность к нему поможет генетический центр. Обычно такой есть во всех крупных городах. Перед сдачей анализов проводится консультация с врачом, чтобы выяснить, какие проблемы со здоровьем наблюдаются у родственников.

Медико-генетическое обследование проводится путем взятия крови на анализ. Образец внимательно изучается в лаборатории на предмет каких-либо отклонений. Будущие родители обычно посещают подобные консультации уже после наступления беременности. Однако в генетический центр стоит прийти и во время её планирования.

Наследственные заболевания серьезно отражаются на психическом и физическом здоровье ребенка, влияют на продолжительность жизни. Большинство из них тяжело поддается лечению, а их проявление только корректируется медицинскими средствами. Поэтому лучше подготовиться к подобному ещё до зачатия малыша.

Синдром Дауна

Одна из наиболее распространенных генетических болезней - синдром Дауна. Она встречается в 13 случаях из 10000. Это аномалия, при которой человек имеет не 46, а 47 хромосом. Диагностировать синдром можно сразу при рождении.

Среди главных симптомов уплощенное лицо, приподнятые уголки глаз, короткая шея и недостаток мышечного тонуса. Ушные раковины, как правило, маленькие, разрез глаз косой, неправильная форма черепа.

У больных детей наблюдаются сопутствующие расстройства и болезни - пневмония, ОРВИ и т. д. Возможно возникновение обострений, например, потеря слуха, зрения, гипотериоз, заболевания сердца. При даунизме замедлено и часто остается на уровне семи лет.

Постоянная работа, специальные упражнения и препараты значительно улучшают ситуации. Известно много случаев, когда люди с подобным синдромом вполне могли вести самостоятельную жизнь, находили работу и достигали профессиональных успехов.

Гемофилия

Редкое наследственное заболевание, поражающее мужчин. Встречается один раз на 10 000 случаев. Гемофилия не лечится и возникает в результате изменения одного гена в половой Х-хромосоме. Женщины являются только переносчиками болезни.

Основной характеристикой является отсутствие белка, который отвечает за свертывание крови. В таком случае, даже незначительная травма вызывает кровотечение, которое не просто остановить. Иногда оно проявляет себя только на следующий день после ушиба.

Английская королева Виктория была носителем гемофилии. Она передала болезнь многим своим потомкам, в том числе и цесаревичу Алексею - сыну царя Николая II. Благодаря ей болезнь стали называть «царской» или «викторианской».

Синдром Ангельмана

Болезнь часто называют «синдромом счастливой куклы» или «синдромом Петрушки», так как у больных наблюдаются частые вспышки смеха и улыбки, хаотические движения рук. При данной аномалии характерно нарушение сна и психического развития.

Синдром возникает раз на 10 000 случаев из-за отсутствия некоторых генов в длинном плече 15-й хромосомы. Болезнь Ангельмана развивается только, если гены отсутствуют в хромосоме, доставшейся от матери. Когда те же гены отсутствуют в отцовской хромосоме, возникает синдром Прадера-Вилли.

Заболевание нельзя излечить полностью, но облегчить проявление симптомов возможно. Для этого проводятся физические процедуры и массажи. Полностью самостоятельными больные не становятся, но при лечении могут сами себя обслуживать.

Мы согласны подарить детям свою не слишком блестящую внешность и невыдающиеся мозги. Даже допускаем у наследника немного оттопыренные уши. Но вот чего бы нам, ни при каких условиях не хотелось передать малышу, так это какое-нибудь заболевание. Можно ли избежать «плохого наследства»? Ведь наследственные болезни человека, их профилактика и лечение зачастую избегаются при помощи некоторых средств.

Научный подход

Объективно говоря, от данного риска не застрахован ни один родитель. Каждый из нас несет в себе в среднем ю-12 дефектных генов, которые мы получили от своих родных и, возможно, передадим собственным детям. Сегодня науке известно около 5000 наследственных заболеваний, которые развиваются из-за неполадок в генетическом аппарате человека - в генах или хромосомах.
Они подразделяются на три основные группы: моногенные, полигенные и хромосомные.
Сегодня практически любую патологию можно объяснить с точки зрения генетики. Хронический тонзиллит - наследственным дефектом иммунитета, желчнокаменную болезнь - наследственным нарушением обмена веществ.

Виды заболеваний

Моногенные болезни обусловлены дефектом одного гена. На сегодня известно порядка 1400 таких болезней. Хотя распространенность их невысока (5-10 % от общего числа наследственных болезней), полностью они не исчезают. Среди наиболее распространенных в России - муковисцидоз, фенилкетонурия, адреногенитальный синдром, га-лактоземия. Для выявления перечисленных патологий все новорожденные в нашей стране проходят специальные анализы (к сожалению, проверить малышей на наличие всех дефектных генов не может ни одна страна мира). Если выявляется отклонение, младенца переводят на специальную диету, которую надо соблюдать до ю-12, а иногда и до 18 лет. Если же у больных родителей рождаются здоровые дети, то все потомство последних будет «без дефекта».
Полигенные (или мультифакторные) болезни связаны с нарушением взаимодействия нескольких генов, а также факторами окружающей среды. Это самая многочисленная группа - включает около 90 % всех наследственных болезней человека их профилактики и последующего лечения.

Пути передачи

Основной передатчик болезни - больные мама или папа. Если заболеванием страдают оба, риск возрастает в несколько раз. Вместе с тем, даже если вы с супругом здоровы, в вашем организме присутствует ряд дефектных генов. Просто они подавлены нормальными и «молчат». В случае, если у вас с мужем один и тот же «молчащий» ген, у ваших детей может развиться наследственная болезнь.
Своя особенность наследования есть у болезней, «сцепленных с полом», - гемофилии, болезни Гюнтера. Их контролируют гены, которые находятся в половой хромосоме. Родители больного некоторые виды онкологии, пороки развития (в том числе заячья губа и волчья пасть). В ряде случаев родители передают не саму болезнь, а предрасположенность к ней (сахарный , ишемическая болезнь сердца, алкоголизм). Дети получают неблагоприятную комбинацию генов, которая в определенных условиях (стресс, серьезная травма, плохая экология) может привести к развитию болезни. Причем чем сильнее выражено заболевание у мамы или папы, тем выше риск.
Хромосомным наследственным болезням человека, их профилактике и лечению уделяется огромное количество времени и сил, они возникают из-за изменения числа и структуры хромосом. Например, самая известная аномалия - болезнь Дауна - является следствием утроения 2 хромосомы. Подобные мутации не так редки, они встречаются у 6-ю из новорожденных. Другие распространенные заболевания - синдромы Тернера, Эдвардса, Патау. Все они характеризуются множественными пороками: задержкой физического развития, умственной отсталостью, пороками сердечнососудистой, мочеполовой, нервной и других систем. Лечение хромосомных аномалий еще не найдено.
ребенка могут быть здоровы, но, если мама является носительницей мутантного гена, вероятность рождения больного мальчика составляет 5° %. Девочки рождаются здоровыми, но половина из них, в свою очередь, становятся носительницами дефектного гена. Больной отец не передает болезнь сыновьям. Дочери же могут заболеть, только если и мать является носительницей.

Из египетской гробницы

Фараона Эхнатона и царицу Нефертити древние изображали с довольно нестандартной внешностью. Оказывается, дело не только в художественном видении живописцев. По неестественно удлиненной, «башенной» форме черепа, маленьким глазам, ненормально длинным конечностям (так называемые «пальцы паука»), невыраженному подбородку («птичье лицо») ученые опознали синдром Минковского-Шафара - один из наследственных видов анемии (малокровия).

Из русской истории

Нарушение свертываемости крови (гемофилия) у сына последнего русского царя Николая II царевича Алексея тоже наследственной природы. Эта болезнь передается по материнской линии, но проявляется исключительно у мальчиков. Скорее всего, первой обладательницей гена гемофилии стала королева Великобритании Виктория, прабабка Алексея.

Сложности выявления

Наследственные заболевания не всегда проявляются с самого рождения. Некоторые виды умственной отсталости становятся заметны только тогда, когда ребенок начнет говорить или пойдет в школу. А вот хорею Геттингтона (разновидность прогрессирующей умственной отсталости) вообще можно распознать только после до лет.
Кроме того, подводными камнями способны стать и «молчащие» гены. Их действие может проявиться в течение жизни - под влиянием негативных внешних факторов (нездоровый образ жизни, прием ряда лекарственных препаратов, радиация, загрязнение окружающей среды). Если ваш малютка попадает в группу риска, вы можете пройти молекулярно-генетическое обследование, которое поможет выявить вероятность развития заболевания в каждом конкретном случае. Далее специалист может назначить меры профилактики. Если же больные гены оказываются доминирующими, избежать заболевания невозможно. Можно лишь облегчить симптомы болезни. Еще лучше - постараться их предупредить до момента родов.

Группа риска

Если у вас с супругом присутствует один из перечисленных факторов, лучше до беременности пройти медико-генетическое консультирование.

1. Наличие нескольких случаев наследственных заболеваний по обеим линиям. Даже если вы сами здоровы, вы можете быть носителями дефектных генов.
2. Возраст старше 35 лет. С годами количество мутаций в организме накапливается. Риск ряда болезней растет в геометрической прогрессии. Так, при болезни Дауна для 16-летних мам он составляет 1:1640, для 30-летних - 1:720, для 40-летних - уже 1:70.
3. Рождение предыдущих детей с серьезными наследственными заболеваниями.
4. Несколько случаев выкидыша. Часто их причиной становятся серьезные генные или хромосомные отклонения у плода.
5. Длительный прием женщиной лекарственных средств (противосудорожных, антитиреоидных, противоопухолевых препаратов, кортикостероидов).
6. Контакт с токсическими и радиоактивными веществами, а также алкоголизм и наркомания. Все это может стать причиной генетических мутаций.

Благодаря развитию медицины теперь у всех родителей есть выбор - продолжить семейную историю тяжелого заболевания или прервать ее.

Методы профилактики

Если вы попадаете в группу риска, вам надо пройти консультацию врача-генетика. На основании подробной родословной и других данных он решит, оправданы ли ваши опасения. Если врач подтвердит наличие риска, вам стоит пройти генетическое тестирование. Оно определит, являетесь ли вы носителями опасных дефектов.
Если опасность рождения больного малыша слишком высока, специалисты советуют вместо естественного зачатия прибегнуть к экстракорпоральному оплодотворению (ЭКО) с предимплантационной генетической диагностикой (ПГД). ПГД позволяет по одной взятой у эмбриона клетке понять, здоров он или болен. Затем отбираются и имплантируются в матку только здоровые эмбрионы. После ЭКО частота наступления беременности составляет 40 % (может потребоваться не одна процедура). При этом следует помнить, что тестирование эмбриона проводится на конкретную болезнь (по которой заранее выявляется повышенный риск). Это не значит, что родившийся в итоге ребенок гарантирован от других болезней, в том числе наследственных. ПГД - сложный и недешевый метод, но он хорошо работает в умелых руках.
Во время беременности стоит обязательно посещать все плановые УЗИ и сдавать кровь на «тройной тест» (для оценки степени риска развития патологии). При опасности хромосомных мутаций можно пройти биопсию хориона. Хотя существует угроза прерывания беременности, эта манипуляция позволяет определить наличие хромосомных аномалий. При их обнаружении беременность советуют прервать.

Окружающая среда никогда не была постоянной. Даже в прошлом она не была абсолютно здоровой. Однако существует принципиальное отличие современного периода в истории человечества от всех предыдущих. В последнее время темпы изменения среды стали столь ускоренными, а диапазон изменения так расширился, что проблема изучения последствий стала неотложной.

Отрицательное влияние среды на наследственность человека может выражаться в двух формах:

    факторы среды могут «разбудить» молчавший или заставить «замолчать» работающий ген,

    факторы среды могут вызвать мутации, т.е. изменить генотип человека.

К настоящему времени груз мутаций в популяциях человека составил 5%, а список наследственных заболеваний включает около 2000 болезней. Ощутимый вред человечеству наносят новообразования, вызванные мутациями соматических клеток. Возрастание числа мутаций влечёт за собой рост естественных выкидышей. Сегодня во время беременности погибает до 15% плодов.

Одной из важнейших задач сегодняшнего дня является задача создания службы мониторинга за генофондом человека, которая бы регистрировала число мутаций и темпы мутирования. Несмотря на кажущуюся простоту этой задачи, реальное её решение сталкивается с целым рядом трудностей. Главная трудность состоит в огромном генетическом разнообразии людей. Огромным является и число генетических отклонений от нормы.

В настоящее время отклонениями от нормы в генотипе человека и их фенотипическим проявлением занимается медицинская генетика, в рамках которой разрабатываются методы профилактики, диагностики и лечения наследственных болезней.

Методы профилактики наследственных заболеваний.

Профилактика наследственных болезней может проводиться несколькими способами.

А) Могут проводиться мероприятия, направленные на ослабление действия мутагенных факторов: уменьшение дозы облучения, снижение количества мутагенов в окружающей среде, предупреждение мутагенных свойств сывороток и вакцин.

Б) Перспективным направлением является поиск антимутагенных защитных веществ . Антимутагены – это соединения, нейтрализующие сам мутаген до его реакции с молекулой ДНК или снимающие поражение с молекулы ДНК, вызванные мутагенами. С этой целью применяют цистеин, после введения которого организм мыши оказывается способным переносить смертельную дозу радиации. Антимутагенными свойствами обладает ряд витаминов.

В) Целям профилактики наследственных болезней служит генетическое консультирование. При этом предупреждаются близкородственные браки (инбридинг), поскольку при этом резко возрастает вероятность рождения детей, гомозиготных по аномальному рецессивному гену. Выявляются гетерозиготные носители наследственных заболеваний. Врач-генетик- не юридическое лицо, он не может запретить или разрешить консультируемым иметь детей. Его цель – помочь семье реально оценить степень опасности.

Методы диагностики наследственных заболеваний.

А) Метод массовой (просеивающей) диагностики .

Данный метод используют применительно к новорождённым с целью выявления галактоземии, серповидно-клеточной анемии, фенилкетонурии.

Б) Ультразвуковое обследование.

В 70-е годы на 1У Международном генетическом конгрессе прозвучала идея о внедрении в медицинскую практику дородовой диагностики наследственных заболеваний. Сегодня наиболее широко используется метод ультразвукового обследования. Главное его достоинство состоит в массовости обследования и возможности выявить отклонения на 18 – 23 неделе беременности, когда плод ещё самостоятельно нежизнеспособен.

В) Амниоцентез.

На сроке беременности 15-17 недель прокалывают шприцем плодный пузырь и отсасывают небольшое количество плодной жидкости, в которой есть слущенные клетки эпидермиса плода. Эти клетки 2 – 4 недели выращивают в культуре на специальных питательных средах. Затем с помощью биохимического анализа и изучения хромосомного набора можно выявить около 100 генных и практически все хромосомные и геномные аномалии. Метод амниоцентеза успешно используется в Японии. Здесь обязательно и бесплатно обследуют всех женщин старше 35 лет, а также женщин уже имеющих детей с отклонениями от нормы. Амниоцентез – относительно трудоёмкая и дорогостоящая процедура, но экономисты подсчитали, что стоимость анализа для 900 женщин намного дешевле, чем стоимость прижизненной госпитализации одного больного с наследственными аномалиями.

Г) Цитогенетический метод.

Изучаются образцы крови людей с целью определения аномалий хромосомного аппарата. Особенно важно это при определении носительства заболеваний у гетерозигот.

Д) Биохимический метод.

Основывается на генетическом контроле синтеза белков. Регистрация различных видов белков позволяет оценить частоту мутаций.

Методы лечения наследственных болезней.

А) Диетотерапия.

Заключается в установлении правильно подобранной диеты, которая снизит тяжесть проявления болезни. Например, при галактоземии патологическое изменение наступает в силу того, что нет фермента, расщепляющего галактозу. Галактоза накапливается в клетках, вызывая изменения в печени и головном мозге. Лечение болезни проводят, назначая диету, исключающую в продуктах галактозу. Генетический дефект при этом сохраняется и передаётся потомству, но обычные проявления болезни у человека, использующего данную диету, отсутствуют.

Б) Введение в организм недостающего фактора.

При гемофилии проводят инъекции белка, который временно улучшает состояние больного. В случае наследственных форм сахарного диабета в организме не вырабатывается инсулин, регулирующий углеводный обмен. В этом случае инсулин вводят в организм.

В) Хирургические методы.

Некоторые наследственные заболевания сопровождаются анатомическими отклонениями от нормы. В этом случае используется хирургическое удаление органов или их частей, коррекция, трансплантация. Например, при полипозе удаляют прямую кишку, оперируют врождённые пороки сердца.

Г) Генная терапия – устранение генетических ошибок. Для этого в соматические клетки организма включают одиночный нормальный ген. Этот ген в результате размножения клеток заменит патологический ген. Генная терапия через зародышевые клетки осуществляется в настоящее время на животных. Нормальный ген встраивается в яйцеклетку с аномальным геном. Яйцеклетка имплантируется в организм самки. Из данной яйцеклетки развивается организм с нормальным генотипом. Генная терапия планируется к применению лишь в тех случаях, когда болезнь угрожает жизни и не подлежит лечению другими способами.

За страницами школьного учебника.

Некоторые вопросы евгенизма.

Идея искусственного улучшения человека не нова. Но только в 1880г. появилось понятие «евгенизм». Слово это ввёл двоюродный брат Ч. Дарвина – Ф. Гальтон. Он определял евгенику как науку об улучшении потомства, которая отнюдь не ограничивается вопросами разумных скрещиваний, но, особенно в случае человека, занимается всеми воздействиями, которые способны дать наиболее одарённым расам максимальные шансы преобладать над расами менее одарёнными.

Сам термин «евгенизм» происходит от греческого слова, обозначающего человека хорошего рода, знатного происхождения, хорошей расы.

Гальтон несомненно признавал определённую роль среды в развитии индивидуума, но в конечном счёте он считал, что «раса» важнее среды, т.е. он делал упор на то, что мы сегодня называем генетическим фактором.

Идея об улучшении популяции человека с помощью биологических методов имеет большое прошлое. Рассуждения подобного типа историки находили ещё у Платона. Тем не менее Гальтон был оригинален, разработав законченную теорию. Его произведения представляют собой основной источник, к которому следует обращаться при анализе того, что происходит сегодня. Согласно Гальтону, основанная им евгеника заслуживала статуса науки. Под определённым углом зрения, евгенизм действительно содержит в себе нечто научное, он использует некоторые теории и результаты из области биологии, антропологии, демографии, психологии и др. Очевидно, однако, что основа евгенизма социальная и политическая. Теория имела практическую конечную цель – сохранить наиболее «одарённые расы», увеличить численность элиты нации.

Под влиянием собственных неудач, постигших его в Кембридже, Гальтон пристально заинтересовался следующей проблемой: каково происхождение наиболее одарённых людей. Он написал работы, в которых с помощью статистики старался подтвердить гипотезу, подсказанную ему личными убеждениями, что наиболее одарённые индивидуумы часто бывают близкими родственниками людей, которые тоже одарены. Принцип проведения исследований был у Гальтона простым: он изучал популяции людей, принадлежащих к социальной элите (судьи, государственные деятели, учёные). Он выявил довольно значительное число их близких родственников, которые сами были видными деятелями. Сравнения производились методически с учётом различной степени родства. Установленные таким образом корреляции были явно нестабильными и ограниченными. В действительности интерпретация этих статистических данных в пользу тезиса о биологическом наследовании ни в коей мере не была очевидной. Но сам Гальтон принадлежал к английской элите, поэтому психологически ему было довольно легко допустить наследование гениальности.

В истории биологии роль Гальтона обычно недооценивается. Биологи не воспринимали Гальтона как специалиста: интересы биологические у него были подчинены более общим интересам. И всё же именно он за 10 лет до Вейсмана сформулировал два основных положения его теории. Гальтон проявил интерес к генетике и в связи с тем, что он приписывал наследственности важную роль в социальных явлениях.

Применение евгенизма в области науки в некоторых случаях оказывается плодотворным, но в целом евгеника лишена научной основы. Проект улучшения отдельных рас, наиболее одарённых, опирается, прежде всего, на идеологические и политические мотивы. Тот факт, что генетика может обеспечить евгенистов какими-то аргументами, абсолютно не доказывает ни истинности, ни этической правомерности этого проекта. Понятие «расы» в трактовка Гальтона весьма растяжимо. Прежде всего оно может соответствовать распространённому представлению о расе: жёлтая, белая, чёрная. Использует он понятие «раса» и более гибко: расу образует любая однородная популяция, в которой определённые признаки стойко передаются по наследству. Такая идея в высшей степени спорна. Критерии «хорошей расы» сами по себе довольно расплывчаты, но главными среди них являются такие качества как ум, энергия, физическая сила и здоровье.

В 1873г. Гальтон опубликовал статью «Об улучшении наследственности». В ней он объясняет, что первейшей обязанностью человечества является добровольное участие в общем процессе естественного отбора. По мнению Дальтона, люди должны методично и быстро делать то, что природа делает слепо и медленно, а именно: благоприятствовать выживанию наиболее достойных и замедлять или прерывать воспроизведение недостойных. Многие политические деятели благосклонно выслушивали такие высказывания. Приводились впечатляющие цифры: между 1899 и 1912г.г. в США в штате Индиана было произведено 236 операций вазэктомии умственно отсталым мужчинам. Тот же штат в 1907г. проголосовал за закон, предусматривающий стерилизацию наследственных дегенератов, затем так же поступила Калифорния и ещё 28 штатов. В 1935г. общее число операций по стерилизации достигло 21539. Не все евгенистские мероприятия были такими грубыми, хотя в основе их лежала одна и та же философия селекции наиболее одарённых людей. Заслуживает внимания тот факт, что люди науки, пользующиеся большой известностью, не колеблясь предлагали очень суровые меры. Лауреат Нобелевской премии француз Карел в 1935г. опубликовал свой труд «Это неизвестное существо человек», который имел необыкновенный успех. В этой книге автор объяснял, что учитывая ослабление естественного отбора, необходимо восстановить «биологическую наследственную аристократию». Сожалея о наивности цивилизованных наций, проявляющейся в сохранении бесполезных и вредных существ, он советовал создавать специальные заведения для осуществления эвтаназии преступников.

Таким образом, понятие «евгенизм» охватывает многообразные проявления действительности, но всё многообразие можно свести к двум формам: евгенизм воинственный (сознательный) и евгенизм «мягкий» (бессознательный). Первый наиболее опасен. Это он породил газовые камеры нацистов. Но было бы ошибкой считать второй безвредным. Ему тоже присуща двусмысленность: некоторые мероприятия, связанные с выявлением и предупреждением наследственных болезней, представляют собой зачаточную форму евгенизма.

Отличие евгенизма от социального дарвинизма.

Сторонники социального дарвинизма проповедуют невмешательство. Они полагают, что соревнование между людьми полезно и благодаря борьбе за существование будет обеспечено выживание лучших индивидуумов, поэтому достаточно не препятствовать процессу отбора, протекающему спонтанно.

Что касается евгенизма, то ему присуще нечто полицейское: его цель – установить авторитарную систему, способную производить «научным способом» хороших индивидуумов и хорошие гены, в которых нуждается нация. Тут легко покатиться по наклонной плоскости: начинают с установления карт генетической идентичности, увеличивают число проверок для установления пригодности к браку, перекрывают каналы, ведущие к порочным элементам, и тогда наступает очередь заключительного акта, например, эвтаназии – гуманной и экономичной. Нацистский евгенизм имел сверхнаучное обоснование. Гитлер, чтобы оправдать культ «чистой расы», недвусмысленно ссылается на биологию размножения и теорию эволюции.

Что значит быть евгенистом сегодня?

Со времён Гальтона положение сильно изменилось. Годы существования нацизма привели к тому, что евгенизму в плане идеологическом и социальном пришлось отступить. Но огромные успехи биологии и генной инженерии сделали возможным возникновение неоевгенизма. Большим новшеством была разработка методов, позволяющих выявить «плохие» гены, т.е. гены, ответственные за заболевания. Выявлять генетические дефекты можно на разных стадиях. В одних случаях обследуют людей, желающих иметь детей, в других – беременных женщин. Если у плода выявляется серьёзная аномалия, то может быть поставлен вопрос об аборте. Выявляя серьёзные генетические ошибки у новорождённых, в результате раннего лечения можно восстановить утраченную функцию. Таким образом, возникла новая ситуация: отныне можно планировать грандиозную долгосрочную операцию по капитальной очистке генофонда человечества. Это поднимает многочисленные вопросы как технического, так и этического порядка. Прежде всего, где остановиться при выбраковке генов? Идеал беспощадного генетического отбора представляется спорным в биологическом плане6 не может ли такой отбор привести к обеднению генофонда человечества? Мечта евгенистов – использовать отбор генов сродни отбору в животноводстве. Но именно животноводы имели возможность убедиться в том, что систематический отбор можно использовать лишь до определённого предела: при слишком усиленном улучшении разновидности её жизнеспособность иногда чрезмерно снижается. В настоящее время существует две основных тенденции, выступающие друг против друга. Один лагерь составляют сторонники жёстких мер. Они считают, что генная инженерия дала в руки человека оружие, которое должно быть использовано на благо человечества. Например, лауреат Нобелевской премии по физиологии и медицине Ледерберг является сторонником клонирования человеческих генов как эффективного средства для создания выдающихся людей. В другом лагере находятся те, кто требует объявить сферу генетики человека неприкосновенной. В США, благодаря частной инициативе уже организован сбор и консервация спермы лауреатов Нобелевской премии. Таким образом, если верить ответственным лицам, можно будет путём искусственного осеменения легко произвести на свет детей, имеющих выдающиеся таланты. В действительности ничто не позволяет утверждать, что такой проект научно обоснован.

Целый ряд фактов свидетельствует о том, что сегодня одновременно имеются разные причины, способствующие воскрешению евгенизма.

Тюйе П. «Соблазны евгенизма».

В кн. «Генетика и наследственность». М.: Мир, 1987.