Мышечные ткани и их функции строение. Виды мышечной ткани

Растительные и животные организмы различаются не только внешне, но и, конечно, внутренне. Однако самая главная отличительная черта образа жизни - это то, что животные способны активно передвигаться в пространстве. Обеспечивается это благодаря наличию в них особых тканей - мышечных. Их мы и рассмотрим подробнее дальше.

Животные ткани

В организме млекопитающих животных и человека выделяют 4 типа тканей, выстилающих все органы и системы, формирующих кровь и осуществляющих жизненно важные функции.

Совокупное сочетание всех перечисленных видов обеспечивает нормальное строение и функционирование живых существ.

Мышечная ткань: классификация

Особую роль в активной жизнедеятельности человека и животных играет специализированная структура. Ее название - мышечная ткань. Строение и функции ее весьма своеобразны и интересны.

Вообще данная ткань неоднородна и имеет свою классификацию. Следует рассмотреть ее подробнее. Существуют такие разновидности мышечных тканей, как:

  • гладкая;
  • поперечнополосатая;
  • сердечная.

Каждая из них имеет свое место локализации в организме и выполняет строго определенные функции.

Строение клетки мышечной ткани

Все три разновидности мышечных тканей имеют свои особенности строения. Однако можно выделить общие закономерности устройства клетки такой структуры.

Во-первых, она удлиненной формы (иногда достигает 14 см), то есть тянется вдоль всего мышечного органа. Во-вторых, она многоядерная, так как именно в этих клетках наиболее интенсивно протекают процессы синтеза белка, образования и распада молекул АТФ.

Также особенности строения мышечной ткани в том, что ее клетки содержат пучки миофибрилл, сформированных двумя белками - актином и миозином. Именно они обеспечивают главное свойство этой структуры - сократимость. Каждая нитевидная фибрилла включает в себя полосы, в микроскоп видимые как более светлые и темные. Ими являются белковые молекулы, образующие что-то вроде тяжей. Актин формирует светлые, а миозин - темные.

Особенности мышечной ткани любого типа в том, что их клетки (миоциты) образуют целые скопления - пучки волокон, или симпласты. Каждый из них изнутри выстлан целыми скоплениями фибрилл, в то время как сама мельчайшая структура состоит из названных выше белков. Если рассмотреть образно данный механизм строения, то получается, словно матрешка, - меньшее в большем, и так до самых пучков волокон, объединенных рыхлой соединительной тканью в общую структуру - определенный тип мышечной ткани.

Внутренняя среда клетки, то есть протопласт, содержит все те же самые структурные компоненты, что и любая другая в организме. Отличие - в количестве ядер и их ориентации не в центре волокна, а в периферической части. Также в том, что деление происходит не за счет генетического материала ядра, а благодаря особым клеткам, носящим название сателлитов. Они входят в состав оболочки миоцита и активно выполняют функцию регенерации - восстановления целостности ткани.

Свойства мышечных тканей

Как и любые другие структуры, данные разновидности тканей имеют свои особенности не только в строении, но и в выполняемых функциях. Основные свойства мышечных тканей, благодаря которым они могут это делать:

  • сокращение;
  • возбудимость;
  • проводимость;
  • лабильность.

Благодаря большому количеству кровеносных сосудов и капилляров, питающих мышцы, они могут быстро воспринимать сигнальные импульсы. Данное свойство называется возбудимостью.

Также особенности строения мышечной ткани позволяют ей быстро реагировать на любые раздражения, посылая ответный импульс в кору головного и спинной мозга. Так проявляется свойство проводимости. Это очень важно, так как способность вовремя отреагировать на угрожающие воздействия (химического, механического, физического характера) - важное условие нормальной безопасной жизнедеятельности любого организма.

Мышечная ткань, строение и функции, которые она выполняет - все это в целом сводится к главному свойству, сократимости. Оно подразумевает произвольное (контролируемое) или непроизвольное (без осознанного управления) уменьшение или увеличение длины миоцита. Происходит это благодаря работе белковых миофибрилл (актиновых и миозиновых нитей). Они могут растягиваться и истончаться почти до невидимости, а затем снова быстро восстанавливать свою структуру.

В этом состоят особенности мышечной ткани любого типа. Так построена работа сердца человека и животных, их сосудов, глазных мышц, вращающих яблоко. Именно данное свойство обеспечивает способность к активному движению, перемещению в пространстве. Что бы сумел сделать человек, если бы его мышцы не могли сокращаться? Ничего. Поднять и опустить руку, подпрыгнуть, присесть, танцевать и бегать, выполнять различные физические упражнения - все это помогают делать только мышцы. А именно миофибриллы актиновой и миозиновой природы, образующие миоциты ткани.

Последнее свойство, о котором необходимо упомянуть, это лабильность. Она подразумевает способность ткани быстро восстанавливаться после возбуждения, приходить в абсолютную работоспособность. Лучше миоцитов это могут делать только аксоны -

Строение мышечных тканей, обладание перечисленными свойствами, - главные причины выполнения ими ряда важнейших функций в организмах животных и человека.

Гладкая ткань

Одна из разновидностей мышечных. Имеет мезенхимное происхождение. Устроена отлично от других. Миоциты небольшие, слегка вытянутые, напоминают утолщенные в центре волокна. Средний размер клетки составляет около 0,5 мм в длину и 10 мкм в диаметре.

Протопласт отличается отсутствием сарколеммы. Ядро одно, а вот митохондрий много. Локализация генетического материала, отделенного от цитоплазмы кариолеммой, - в центре клетки. Плазматическая мембрана устроена достаточно просто, сложных белков и липидов не наблюдается. Рядом с митохондриями и по всей цитоплазме разбросаны миофибрилльные кольца, содержащие актин и миозин в небольших количествах, однако достаточных для сокращения ткани. Эндоплазматическая сеть и комплекс Гольджи несколько упрощены и редуцированы по сравнению с другими клетками.

Гладкая мышечная ткань образована пучками миоцитов (веретенообразных клеток) описанного строения, иннервируется эфферентными и афферентными волокнами. Подчиняется управлению вегетативной нервной системы, то есть сокращается, возбуждается без осознанного контроля организма.

В некоторых органах гладкая мускулатура сформирована благодаря индивидуальным одиночным клеткам с особенной иннервацией. Хотя такое явление достаточно редко. В целом можно выделить два основных типа клеток гладкой мускулатуры:


Первая группа клеток малодифференцированна, содержит множество митохондрий, хорошо выраженный аппарат Гольджи. В цитоплазме явно прослеживаются пучки сократительных миофибрилл и микрофиламентов.

Вторая группа миоцитов специализируется на синтезе полисахаридов и сложных комбинативных высокомолекулярных веществах, из которых в дальнейшем строятся коллаген и эластин. Ими же вырабатывается значительная часть межклеточного вещества.

Места локализации в организме

Гладкая мышечная ткань, строение и функции, которые она выполняет, позволяют ей концентрироваться в разных органах в неодинаковом количестве. Так как иннервация не подчиняется контролю со стороны направленной деятельности человека (его сознания), то и места локализации будут соответствующие. Такие, как:

  • стенки кровеносных сосудов и вен;
  • большая часть внутренних органов;
  • кожа;
  • глазное яблоко и прочие структуры.

В связи с этим характер активности гладкой мышечной ткани - быстродействующий низкий.

Выполняемые функции

Строение мышечных тканей накладывает прямой отпечаток на выполняемые ими функции. Так, гладкая мускулатура нужна для следующих операций:


Желчный пузырь, места впадения желудка в кишку, мочевой пузырь, лимфатические и артериальные сосуды, вены и многие другиеорганы - все они способны нормально функционировать только благодаря свойствам гладкой мускулатуры. Управление, еще раз оговоримся, строго автономное.

Поперечно-полосатая мышечная ткань

Рассмотренные выше не подчиняются управлению со стороны сознания человека и не отвечают за его движение. Это прерогатива следующего вида волокон - поперечно-полосатых.

Сначала разберемся, за что им было дано такое название. При рассмотрении в микроскоп можно увидеть, что данные структуры имеют четко выраженную исчерченность поперек определенными тяжами - нитями белка актина и миозина, образующими миофибриллы. Это и послужило причиной для такого названия ткани.

Поперечно-мышечная ткань имеет миоциты, содержащие множество ядер и представляющие собой результат слияния нескольких клеточных структур. Такое явление обозначается терминами "симпласт" или "синцитий". Внешний вид волокон представлен длинными, вытянутыми цилиндрическими клетками, плотно соединенными между собой общим межклеточным веществом. Кстати, существует определенная ткань, которая образует эту среду для сочленения всех миоцитов. Ею обладает и гладкая мышечная. Соединительная ткань - основа которая может быть как плотной, так и рыхлой. Она же формирует целый ряд сухожилий, при помощи которых поперечно-полосатая скелетная мускулатура крепится к костям.

Миоциты рассматриваемой ткани, кроме значительного размера, имеют еще несколько особенностей:

  • саркоплазма клеток содержит большое количество хорошо различимых микрофиламентов и миофибрилл (актин и миозин в основе);
  • данные структуры объединяются в большие группы - мышечные волокна, которые, в свою очередь, формируют непосредственно скелетные мышцы разных групп;
  • имеется множество ядер, хорошо выраженный ретикулюм и аппарат Гольджи;
  • хорошо развиты многочисленные митохондрии;
  • иннервация осуществляется под контролем соматической нервной системы, то есть осознанно;
  • утомляемость волокон высокая, однако и работоспособность тоже;
  • лабильность выше среднего уровня, быстрое восстановление после рефракции.

В теле животных и человека поперечнополосатая мускулатура имеет красный цвет. Это объясняется присутствием в волокнах миоглобина - специализированного белка. Каждый миоцит покрыт снаружи практически невидимой прозрачной оболочкой - сарколеммой.

В молодом возрасте животных и человека содержат больше плотной соединительной ткани между миоцитами. С течением времени и старением она заменяется на рыхлую и жировую, поэтому мышцы становятся дряблыми и слабыми. В целом скелетная мускулатура занимает до 75% от общей массы. Именно она составляет мясо животных, птиц, рыб, которое человек употребляет в пищу. Питательная ценность очень высокая из-за большого содержания различных белковых соединений.

Разновидностью поперечно-полосатой мускулатуры, помимо скелетной, является сердечная. Особенности ее строения выражаются в присутствии двух типов клеток: обычных миоцитов и кардиомиоцитов. Обычные имеют такое же строение, как и скелетные. Отвечают за автономное сокращение сердца и его сосудов. А вот кардиомиоциты - особые элементы. В них незначительное количество миофибрилл, а значит, актина и миозина. Это говорит о низкой способности к сокращению. Но их задача не в этом. Главная роль - выполнение функции проведения возбудимости по сердцу, осуществление ритмической автоматии.

Сердечная мышечная ткань формируется за счет многократного ветвления входящих в ее состав миоцитов и последующего объединения в общую структуру этих веточек. Еще одно отличие от поперечно-полосатой скелетной мускулатуры - в том, что сердечные клетки содержат ядра в своей центральной части. Миофибриллярные участки локализованы по периферии.

Какие органы образует?

Вся скелетная мускулатура организма - это поперечно-полосатая мышечная ткань. Таблица, отражающая места локализации данной ткани в организме, приведена ниже.

Значение для организма

Роль, которую исполняет поперечно-полосатая мускулатура, переоценить сложно. Ведь именно она отвечает за самое важное отличительное свойство растений и животных - способность к активному передвижению. Человек может совершать массу самых сложных и простых манипуляций, и все они будут зависеть от работы скелетных мышц. Многие люди занимаются тщательными тренировками своей мускулатуры, добиваются в этом большого успеха благодаря свойствам мышечных тканей.

Рассмотрим, какие еще функции выполняет поперечно-полосатая мускулатура в теле человека и животных.

  1. Отвечает за сложные мимические сокращения, выражение эмоций, внешние проявления сложных чувств.
  2. Поддерживает положение тела в пространстве.
  3. Выполняет функцию защиты органов брюшной полости (от механических воздействий).
  4. Сердечная мускулатура обеспечивает ритмические сокращения сердца.
  5. Скелетные мышцы участвуют в актах глотания, формируют голосовые связки.
  6. Регулируют движения языка.

Таким образом, можно сделать следующий вывод: мышечные ткани - важные структурные элементы любого животного организма, наделяющие его определенными уникальными способностями. Свойства и строение разных типов мускулатуры обеспечивают жизненно необходимые функции. В основе строения любой мышцы лежит миоцит - волокно, образованное из белковых нитей актина и миозина.

textus muscularis ) называют ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон . Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией.Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

Первоначальные исследования изображений зависят от расположения опухоли

Саркома матки может вызвать кровотечение, воспаление или боль в области таза. Диагностические и промежуточные системы. Из-за того, что саркомы редки, многие врачи не консультировались с пациентами с саркомой или ухаживали за ними. Когда подозревается саркома, важно проконсультироваться с медицинской бригадой , знакомой с саркомой.

Для установления диагноза и наблюдения за типом саркомы жизненно важно сделать двухпозицию. Успешная биопсия требует знаний о саркомах и их лечении, и это лучше всего делать хирургу, который знаком с саркомой, и экзамен будет проводиться патологоанатомом, который имеет опыт работы с типами саркомы.

Свойства мышечной ткани

  1. Сократимость

Виды мышечной ткани

Гладкая мышечная ткань

Состоит из одноядерных клеток - миоцитов веретеновидной формы длиной 20-500 мкм. Их цитоплазма в световом микроскопе выглядит однородно, без поперечной исчерченности . Эта мышечная ткань обладает особыми свойствами: она медленно сокращается и расслабляется, обладает автоматией, является непроизвольной (то есть ее деятельность не управляется по воле человека). Входит в состав стенок внутренних органов : кровеносных и лимфатических сосудов , мочевыводящих путей , пищеварительного тракта (сокращение стенок желудка и кишечника).

Бифиз может выполняться посредством открытой процедуры или закрытой процедуры с использованием большой иглы для удаления ткани. Биопсию следует делать правильно, чтобы собрать достаточное количество ткани для получения диагноза, но не так много ткани, чтобы скомпрометировать окончательную резекцию опухоли. Как правило, предпочтительным методом является наименее инвазивный метод, позволяющий патологу дать окончательный диагноз.

Эта постановка также основана на размере опухоли следующим образом . В дополнение к этой официальной постановке, врачи также рассматривают другие функции, которые указывают на высокую вероятность рецидива. Пациенты с такими характеристиками считаются «высоко рискованными» и могут рассматриваться более агрессивно.

Поперечно-полосатая скелетная мышечная ткань

Состоит из миоцитов, имеющих большую длину (до нескольких сантиметров) и диаметр 50-100 мкм; эти клетки многоядерные, содержат до 100 и более ядер; в световом микроскопе цитоплазма выглядит как чередование тёмных и светлых полосок. Свойствами этой мышечной ткани является высокая скорость сокращения, расслабления и произвольность (то есть её деятельность управляется по воле человека). Эта мышечная ткань входит в состав скелетных мышц , а также стенки глотки, верхней части пищевода, ею образован язык, глазодвигательные мышцы. Волокна длиной от 10 до 12 см.

Лечение саркомы мягких тканей. Учитывая редкость саркомы мягких тканей, лучше всего обращаться с пациентами в специализированном лечебном центре . Шведское исследование показало, что частота рецидивов в 2 раза выше у пациентов, которые не лечатся в специализированных центрах. Кроме того, исследования показали плохие результаты у пациентов, прибывших в специализированные медицинские центры после начальной операции. Конкретное лечение зависит от размера и местоположения опухоли, степени опухоли, независимо от ее распространения.

Лучевая терапия может быть выполнена до или после операции или во время операции с использованием брахитерапии. Исследования показали, что лучевая терапия предотвращает рецидив больше, чем если бы была сделана операция. Исследователи еще не могли признать, что профилактика рецидивов повышает выживаемость. До этой даты они не увеличивали выживаемость с помощью лучевой терапии.

Функции мышечной ткани

Двигательная. Защитная. Теплообменная. Так же можно выделить еще одну функцию - мимическую (социальную). Мышцы лица, управляя мимикой, передают информацию окружающим.

Примечания

Мышечная ткань (textus muscularis) обладает способностью сокращаться, укорачиваться, она осуществляет функции движения. Существуют три разновидности мышечной ткани: исчерченная (поперечнополосатая, скелетная), неисчерченная (гладкая) и сердечная. Наряду с этими разновидностями в организме человека выделяют мышечную ткань эпидер- мального происхождения (миоэпителиальные клетки) и нейтрального происхождения (миоциты мышцы, расширяющей и суживающей зрачок).

Также нет консенсуса относительно того, когда лучевая терапия должна использоваться для достижения наилучших результатов. Недавнее исследование в Канаде показало небольшое улучшение выживаемости в предоперационной повторной терапии, но это исследование имеет продолжение только 3 года. Канадское исследование также показало, что использование предоперационной лучевой терапии может привести к менее сильному заживлению области, затронутой хирургией. Испытания все еще ведутся, чтобы установить лучшее время для проведения лучевой терапии, но это может занять годы.

Исчерченная (поперечнополосатая, скелетная) мышечная ткань (textus muscularis stridtus, s. skeletdlis) образована цилиндрическими мышечными волокнами длиной от 1 до 40 мм и толщиной до 0,1 мм. Каждое волокно представляет собой комплекс, состоящий из миосимпласта и миосателлитоцитов, покрытых общей оболочкой - сарколеммой (от греч. sdrcos - мясо), укрепленной тонкими соединительнотканными волокнами, которая при световой микроскопии выглядит в виде тонкой темной полоски. Под сарколеммой мышечного волокна располагается множество ядер эллипсоидной формы, содержащих 1-2 ядрышка и большое количество элементов зернистой эндоплазматической сети. Центриоли отсутствуют. Примерно 2/3 сухой массы миосимпласта приходится на цилиндрические миофибриллы (рис. 25), проходящие через цитоплазму (саркоплазму). Между миофибриллами залегают многочисленные митохондрии с хорошо развитыми кристами и частички гликогена. Саркоплазма богата белком миоглобином, который подобно гемоглобину может связывать кислород.

Химиотерапию можно проводить до операции, чтобы уменьшить опухоль, чтобы обеспечить лучшую резекцию или после операции. Хирургия и лучевая терапия могут воздействовать только на небольшую область вокруг опухоли, в то время как основная цель химиотерапии - уничтожить любую раковую клетку в организме, которая не обнаружена. Эти клетки могут начать расти в других органах, чаще всего в легких.

Это: доксорубицин, ифосфамид, эпирубицин, гемцитабин и дакарбазин. Хотя у нас нет широкомасштабных контролируемых исследований, демонстрирующих, какое лечение дает наилучшие результаты, однако, более мелкие исследования показывают, что химиотерапия предлагает преимущества пациентам с высоким риском рецидива.

Рис. 25. Исчерченная (поперечнополосатая, скелетная) мышечная ткань: 1 - мышечное волокно; 2 - сарколемма; 3 - миофибриллы; 4 - ядра

В зависимости от толщины волокон и содержания в них миофибрилл и саркоплазмы различают красные и белые поперечнополосатые мышечные волокна. Красные волокна богаты саркоплазмой, миоглобином и митохондриями. Однако они самые тонкие, миофибрилл в них мало, они расположены группами. В красных волокнах окислительные процессы более интенсивны, чем в белых, выше активность сукцинатдегидрогеназы и больше гликогена. Белые волокна толстые, содержат меньше саркоплазмы, миоглобина и митохондрий, но миофибрилл в них больше и располагаются они равномерно. Структура и функция волокон неразрывно связаны. Так, белые волокна сокращаются быстрее, но быстрее устают. Красные способны сокращаться длительнее, долго оставаться в сокращенном (рабочем) состоянии. У человека мышцы содержат оба типа волокон. В зависимости от функции мышцы в ней преобладает тот или иной тип волокон.

Исследователи обнаружили, что удаление метастазов из легких через хирургию может значительно повысить выживаемость. Это непростая процедура, поэтому пациенты должны быть достаточно здоровыми, чтобы пережить хирургическую резекцию опухоли легкого . После первичного лечения пациенты должны обращаться к консультациям и обзорам один раз каждые 3-4 месяца, в течение 3 лет, затем каждые 6 месяцев в течение 2 лет, а затем ежегодно.

Абдоминальные саркомы следует сканировать каждые 3-6 месяцев в течение 3 лет, а затем ежегодно, потому что повторение гораздо труднее обнаружить в животе, используя только физическое обследование . Легочная рентгеновская или торакальная компьютерная томография может выполняться каждые 6-12 месяцев для мониторинга метастазов в легких.

Мышечные волокна имеют поперечную исчерченность: темные анизотропные диски (полоски А) чередуются со светлыми изотропными дисками (полоски I). Диск А разделен светлой зоной (полоска Н), в центре которой проходит мезофрагма (линия М). Диск I разделен темной линией Z (телофрагма). Мышечные волокна содержат сократительные элементы - миофибриллы, среди которых различают толстые (миозиновые) диаметром 10-15 нм и длиной 1,5 мкм, занимающие диск А, и тонкие (актиновые) диаметром 5-8 нм и длиной 1 мкм, лежащие в диске I и прикрепляющиеся к телофрагмам. Участок миофибриллы, расположенный между двумя телофрагмами, представляет собой саркомер - сократительную единицу длиной около 2,5 мкм (рис. 26). Благодаря тому

Также изучаются эффекты химиотерапии. Существуют клинические испытания, в которых используются новые исследователи, но с учетом небольшого числа случаев будет длительное время до получения окончательных результатов. Обработки, которые мы имеем сегодня, были усовершенствованы в ходе клинических испытаний, и многие новые способы продолжают изучаться. Поговорите со своим врачом о клинических испытаниях в этом районе.

Типы саркомы мягких тканей. Фибросаркома Злокачественная фиброзная гистиоцитома Липосаркома Рабдомиосаркома Лейомиосаркома Ангиосаркома Лимпангиосаркома Синовиальная клеточная саркома Нейрофибросаркома. Движение является одной из важнейших характеристик живых существ, его формы становятся разнообразными и очень сложными в животном мире, для которого оно характерно. Благодаря активным движениям животные приобретают большую независимость от изменений в окружающей среде . В этом смысле нервная и мышечная системы образуют функциональную единицу.

Рис. 26. Схема строения двух миофибрилл мышечного волокна: 1 - саркомер; 2 - полоска А (диск А); 3 - полоска H; 4 - линия М (мезофрагма) в середине диска А; 5 - полоска I (диск I); 6 - линия (телофрагма) в середине диска I; 7 - митохондрия; 8 - конечная цистерна; 9 - саркоплазматический ретикулум; 10 - поперечные трубочки (по В.Г. Елисееву и др.)

Функциональная структура полосатой мышцы. Мышечные волокна соединяются вместе соединительной тканью , расположенной вокруг саркомы, где она образует эндомизиум. Мышечные волокна сгруппированы в пучки, также окруженные конъюнктивной оболочкой, называемой перимизием. Тело мышцы, которое включает в себя все пучки мышечных волокон, также покрывается соединительной тканью, называемой эпимизием. Сухожилие - белый конец, очень сильный и нерастяжимый, цилиндрической или узкой ширины мышцы, с которой он был вставлен на кость.

Во время сильного сокращения мышц это соединение очень требовательно, и здесь чаще всего растягиваются растяжки и мышечные перерывы. Между двумя компонентами синаптическое пространство ок. 400 Å. Пресинаптический компонент содержит везикулы с ацетилхолином, химическим посредником, который передает импульс двигательного нерва.

что границы саркомеров всех миофибрилл одного волокна совпадают, возникает регулярная поперечная исчерченность, которая хорошо видна на продольных срезах мышечного волокна. На поперечных срезах мышечного волокна хорошо видны миофибриллы (myofibrilla) в виде темных округлых точек (пятен) на фоне светлой цитоплазмы.

На электронограмме хорошо видны более электронноплотные анизотропные и светлые изотропные диски, в них продольно идущие миофиламенты, осмиофильная линия Z и светлая зона (полоска Н), разделенная мезофрагмой, многочисленные митохондрии, элементы незернистой эндоплазматической сети. В расслабленной миофибрилле концы актиновых филаментов входят между миозиновыми, в сокращенной зоне перекрытия актиновых и миозиновых филаментов увеличиваются вплоть до полного исчезновения изотропного диска. Каждая миофибрилла окружена незернистой эндоплазматической сетью, состоящей из сетчатого и трубчатого элементов. Первые окружают центральную часть саркомера в виде ажурной сеточки, вторые охватывают большую часть саркомера в виде параллельных трубочек и расположены по обеим сторонам от сетчатых. Трубчатые элементы эндоплазматической сети переходят по обеим сторонам диска А в терминальные цистерны. На границе между дисками А и I сарколемма впячивается, образуя Т-трубочки (поперечные трубочки), которые разветвляются внутри волокна и анастомозируют только в горизонтальном направлении.

Постсинаптический компонент содержит многочисленные специфические холинергические рецепторы, к которым присоединен ацетилхолин, а также ферментные рецепторы, которые разрушают химический медиатор для нормальной синаптической передачи. Васкуляризация скелетных мышц очень богата, артерии проникают в мышцу в соединительной ткани между мышечными волокнами и параллельны им. В эндомизие имеется богатая капиллярная сеть, которая приносит кислородную кровь к мышечным волокнам. Венозная сетка несет мускулы продуктов углекислого газа и катаболизма.

На поверхности сарколеммы видны отверстия Т-трубочек. Две терминальные цистерны и поперечная трубочка контактируют между собой, образуя триады. Сети, окружающие саркомеры, сообщаются между собой.

Мышечное сокращение - это результат скольжения тонких (актиновых) филаментов относительно толстых (миозиновых), в результате чего длина филаментов изменяется.

Место проникновения в мышцы соматических и сенсорных волокон называется двигательной точкой; Как только внутри соединительной ткани мышцы, нервы делятся до уровня мышечных волокон. Нервы сенсорные нервы, ведущих информацию как проприоцептивная мышца на боли, напряжение мышц или положения сегменты мышцы и двигательные нервы, представленные аксонами мотонейронов а и у, что приводят заказы на движения добровольных или принудительный, где она заканчивается через нервно-мышечное соединение.

В микроскопической структуре поперечно-полосатого мышечного волокна выделяются следующие основные образования. Возбуждение и возбуждение. Это серия формирующей системы Инвагизации и в продольном направлении поперечных трубок, которые передают действие потенциал сарколеммы на миофибриллах.

В состав мышечного волокна, помимо миосимпласта, входят сателлитомиоциты (satellitomyocytus). Это уплощенные клетки, которые лежат на поверхности волокна под базальной мембраной. Крупное ядро этих клеток богаче хроматином, чем ядра миосимпластов. В отличие от последних, в клетке сателлитомиоцита имеется центросома, органелл немного. Сателлитомиоциты способны к синтезу ДНК и митотическому делению. Благодаря этому они являются стволовыми клетками поперечнополосатой мышечной ткани, которые участвуют в гистогенезе скелетной мускулатуры и ее регенерации.

Полосатый, состоящий из пучков или колонок диаметром 1 м, соединенных параллельно мышечному волокну. Он состоит из сариз или миофибрилл, который является сократительной мышцей мышцы. Миофибриллы составляют от нескольких сотен до нескольких тысяч мышечных волокон. Наблюдаемый в электронном микроскопе , каждый саркомер состоит из темного диска и окружен двумя прозрачными половинами дисков.

На чистом диске показаны только актиновые филаменты, а темный диск содержит миозин миофиламентов и актиновые микрофиламенты среди них. Одной прямой электрической стимуляции мышцы, или косвенно через моторный нерв, с постоянным током определенной интенсивности и продолжительности, вызывает мышечную секунду.

Неисчерченная (гладкая) мышечная ткань (textus musculdris nonstriatus) состоит из гладкомышечных клеток - миоцитов, которые располагаются

в стенках кровеносных, лимфатических сосудов и полых внутренних органов, в сосудистой оболочке глаза, в собственно коже. Гладкие миоциты - это удлиненные веретенообразные клетки длиной от 50 до 200 мкм, толщиной от 5 до 15 мкм, не имеющие поперечной исчерченности (рис. 27). Миоциты располагаются группами так, что их заостренные концы внедряются между двумя соседними клетками. Каждый миоцит окружен базальной мембраной, коллагеновыми и ретикулярными микрофибриллами, среди которых проходят эластические волокна. В зонах межклеточных контактов - нексусов базальная мембрана отсутствует. Удлиненное палочковидное ядро с четко видимым ядрышком достигает 10-25 мкм в длину, при сокращении клетки оно принимает форму што- пора. Клетка содержит продольно ориентированные миофиламенты. Лишь вблизи обоих полюсов ядра расположена лишенная миофиламентов цитоплазма, в которой залегают органеллы. Изнутри к цитолемме прилежат веретенообразные клеточные тельца (тельца прикрепления). Они располагаются и в цитоплазме миоцита. Прикрепительные тельца

Анализ сокращения мышц осуществляется путем графической гравировки явления с помощью устройств, называемых миографами, или с механическими, емкостными или индуктивными современными вставками. Это происходит, когда сжимающая мышца закрепляется на обеих конечностях. Таким образом, длина волокон не изменяется во время сокращения; Но происходит увеличение мышечного напряжения . Антигравитационные мышцы, которые сохраняют осанку, жевательные мышцы в процессе измельчения пищи, выполняют изометрические сокращения.

Изотоническое сжатие. Это делается мышцей, которая придает вес. Во время сжатия его длина уменьшается, а напряжение остается неизменным. Изотонические сокращения характерны для движения конечностей в процессе ходьбы, подъема постоянного веса . Освоительное сжатие. Это промежуточное функциональное проявление. Во время сокращения мышцы он сокращается, но с прогрессирующим увеличением напряжения. Экспериментальные сокращения сочетаются с предыдущими в процессе работы, когда превосходящая мышечная сила преодолевает растущую внешнюю силу.

Рис. 27. Строение неисчерченной (гладкой) мышечной ткани: 1 - миоцит; 2 - миофибриллы в саркоплазме; 3 - ядро миоцита; 4 - сарколемма; 5 - эндомизий; 6 - нерв; 7 - кровеносный капилляр (по И.В. Алмазову и Л.С. Сутулову)

(пластинки) являются эквивалентами Z-пластинок поперечнополосатых мышечных волокон, они образованы белком α-актинином. Пластинки представляют собой эллипсоидные тельца длиной до 3 мкм, толщиной 0,2-0,5 мкм, удаленные друг от друга на расстояние 1-3 мкм. Там, где находятся плотные прикрепительные тельца, микропиноцитозные пузырьки отсутствуют.

В цитоплазме гладких миоцитов находятся миофиламенты трех типов: тонкие актиновые диаметром 3-8 нм, которые прикрепляются к плотным тельцам; промежуточные миофиламенты толщиной около 10 нм, образующие пучки, которые соединяют между собой соседние плотные тельца; толстые короткие миозиновые филаменты диаметром около 15-17 нм.

Группа миоцитов, окруженных соединительной тканью, иннервируются обычно одним нервным волокном. Нервный импульс передается с одной мышечной клетки на другую по межклеточным контактам. Воз- буждение передается от одной клетки к другой через нексусы со скоростью 8-10 см/с. Однако в некоторых гладких мышцах (например, сфинктер зрачка) иннервируется каждый миоцит.

В расслабленном миоците между актиновыми филаментами расположены единичные короткие миозиновые. При сокращении актиновые


Рис. 28. Гладкая мышечная клетка (миоцит) в расслабленном (А) и сокращенном (Б) состояниях: 1 - ядро; 2 - плотные поля (прикрепительные тельца), прикрепленные к цитолемме; 3 - промежуточные филаменты (по А. Хэму и Д. Кормаку)

филаменты скользят по отношению друг к другу под влиянием миозина, подтягивая прикрепительные тельца, в результате чего цитолемма деформируется, плотные тельца сближаются, а участки, расположенные между ними, вздуваются (рис. 28). Движения одних плотных прикрепительных телец передаются другим промежуточными филаментами, что вызывает синхронное сокращение миоцита.

Гладкие мышцы совершают длительные тонические сокращения (например, сфинктеры полых органов, гладкие мышцы кровеносных сосудов) и относительно медленные движения, которые зачастую ритмичны. Глад- кие мышцы отличаются высокой пластичностью - после растяжения они долго сохраняют длину, которую получили в связи с растяжением.

Сердечная исчерченная мышечная ткань (textus muscularis cardiacus) которая по строению и функции отличается от скелетных мышц, состоит из сердечных миоцитов (кардиомиоцитов). По микроскопическому строению сердечная мышечная ткань похожа на скелетную (поперечнополосатая исчерченность). Однако сокращения сердечной мышцы


Рис. 29. Схема строения кардиомиоцита: 1 - базальная мембрана; 2 - окончание миопротофибрилл на цитолемме кардиомиоцита; 3 - вставочный диск между кардиомиоцитами; 4 - саркоплазматическая сеть; 5 - саркосомы (митохондрии); 6 - миопротофибриллы; 7 - диск А (анизотропный диск); 8 - диск I (изотропный диск); 9 - саркоплазма

(по В.Г. Елисееву и др.)

не подконтрольны сознанию человека, она иннервируется вегетативной нервной системой , подобно неисчерченной мышечной ткани.

Кардиомиоциты (myocytus cardiacus) - это клетки неправильной цилиндрической формы, длиной 100-150 мкм и диаметром 10-20 мкм (рис. 29). Каждый кардиомиоцит имеет 1-2 овальных удлиненных ядра, лежащих в центре и окруженных микрофибриллами, расположенными на периферии строго прямолинейно. На обоих полюсах ядра видны удлиненные зоны цитоплазмы, лишенной миофибрилл. Весьма характерны контакты двух соседних кардиомиоцитов, имеющих вид извилистых темных полосок , вставочных дисков, которые активно участвуют в передаче возбуждения от клетки к клетке. Клетки богаты митохондриями. Сарколемма кардиомиоцитов толщиной около 9 нм имеет множество микропиноцитозных инвагинаций, пузырьков. По мере старения человека в его кардиомиоцитах накапливается липофусцин.

Строение миофибрилл кардиомиоцитов аналогично таковому скелетных мышц. В периферических отделах кардиомиоцитов и между митохондриями находится множество частичек гликогена и элементов незернис- той эндоплазматической сети. В кардиомиоцитах имеется очень большое количество крупных митохондрий с хорошо развитыми кристами, которые располагаются группами между миофибриллами. На уровне Z-линий цитолемма кардиомиоцитов также формирует Т-трубочки, вблизи которых сосредоточены скопления цистерн незернистой эндоплазматической сети. Однако триады выражены менее четко, чем в скелетных мышцах.

Кардиомиоциты соединены между собой вставочными дисками, которые на продольном разрезе имеют вид ступенек. В этих участках кардиомиоциты соединяются между собой наподобие зубчатых швов чере- па. Сарколемма соседних клеток соединена с помощью десмосом, лентовидных поясков или пятен сцепления, к которым с обеих сторон прикрепляются актиновые филаменты. Поперечные участки расположены на месте Z-линий. Между кардиомиоцитами (в эндомизиуме) располагаются кровеносные капилляры.

Миоэпителиоциты (эктодермального происхождения) - многоотростчатые клетки, в цитоплазме которых имеются способные сокращаться филаменты, состоящие из мышечных белков. Миоэпителиоциты окружают начальные отделы молочных, потовых, слезных, слюнных желез и, сокращаясь, способствуют выведению секрета из клетки. Мионевроциты радужной оболочки глаза, образующие мышцы, суживающие и расширяющие зрачок, являются производными нейроэктодермы. Миоэпителиоциты и мионевроциты иннервируются вегетативной нервной системой.

А те, в свою очередь, из миоцитов - клеток веретеновидной формы. Сокращения мышц обеспечивают специальные органеллы мышечной ткани, называемые миофибриллами и миофиламентами. Этот процесс происходит благодаря взаимодействию входящих в их состав белков - актина и миозина. В результате организм оказывается способен к перемещению, а некоторые органы получают способность к перистальтике. Таким образом, данная ткань на сегодняшний день является одной из наиболее важных для человеческого организма. Без неё бы не удалось ни передвигаться, ни вообще жить. Данная разновидность ткани является настоящим произведением искусства, выполненным природой.

Для чего нужна мышечная ткань?

У неё имеется сразу несколько назначений. В первую очередь, естественно, необходимо отметить передвижение тела в пространстве. Человеческий организм под воздействием эволюционных преобразований постепенно получал возможность реализовывать данную функцию всё в большей и большей степени. Стоит отметить, что, говоря про мышечную ткань, нельзя не упомянуть и о том обстоятельстве, что из неё построены не только конечности, но и отдельные слои многочисленных органов.

Какой она бывает?

На сегодняшний день достоверно известно, что мышечная ткань бывает нескольких разновидностей. Речь идёт о поперечнополосатом и гладком её виде. Первая встречается как в верхних, так и в нижних конечностях. Здесь поперечнополосатая мышечная ткань обеспечивает продуманные движения. Дело в том, что её иннервация происходит благодаря высшим нервным центрам. Помимо конечностей, мышечная ткань такого типа располагается ещё в верхней трети глотки. Она помогает человеку проглатывать пищу. Из поперечнополосатых мышц состоит мимическая мускулатура, а также язык. Всем этим человек может управлять осмысленно. Если говорить о гладкой мускулатуре, то её функционирование не подчиняется воле человека. За её регуляцию отвечают совсем другие нервные центры. Несмотря на то, что ею нельзя управлять, она обладает исключительно важным значением для каждого. Дело в том, что такая ткань, как отмечалось ранее, входит в состав практически каждого органа. К примеру, в пищеварительной системе человека гладкая мускулатура обеспечивает перистальтику (последовательное сокращение, способствующее продвижению пищевых масс). Во многих полостных органах такая мышечная ткань является просто незаменимой. Дело в том, что здесь она обеспечивает возможность растяжения. Данная функция весьма важна для мочевого и желчного пузыря.

Особенности мышечной ткани

Мускулатура обладает одной весьма важной особенностью. Дело в том, что повреждение мягких тканей такого типа не проходит бесследно: пораженные ткани мышц практически никогда не замещаются аналогичными клетками. В результате, например, такого осложнения, как некроз мягких тканей, человек на всю оставшуюся жизнь может лишиться тех или иных своих способностей.

Мы́шечные тка́ни (лат. textus muscularis - «ткань мышечная») - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям. Состоят из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением. Они обеспечивают перемещения в пространстве организма в целом, его движение органов внутри организма (сердце, язык, кишечник и др.) и состоят из мышечных волокон. Свойством изменения формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

Основные морфологические признаки элементов мышечных тканей: удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофибриллы обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина - при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко падает).

По происхождению и строению мышечные ткани значительно отличаются друг от друга, но их объединяет способность к сокращению, что обеспечивает двигательную функцию органов и организма в целом. Мышечные элементы вытянуты в длину и связаны либо с другими мышечными элементами, либо с опорными образованиями.

Разновидности мышечной ткани

Различают гладкую, поперечнополосатую мышечные ткани и мышечную ткань сердца.

Гладкая мышечная ткань.

Эта ткань образована из мезенхимы. Структурной единицей этой ткани является гладкомышечная клетка. Она имеет вытянутую веретенообразную форму и покрыта клеточной оболочкой. Эти клетки плотно прилегают друг к другу, образуя слои и группы, разделенные между собой рыхлой неоформленной соединительной тканью.

Ядро клетки имеет вытянутую форму и находится в центре. В цитоплазме расположены миофибриллы, они идут по периферии клетки вдоль ее оси. Состоят из тонких нитей и являются сократительным элементом мышцы.

Клетки располагаются в стенках сосудов и большинства внутренних полых органов (желудка, кишечника, матки, мочевого пузыря). Деятельность гладких мышц регулируется вегетативной нервной системой. Мышечные сокращения не подчиняются воле человека и поэтому гладкую мышечную ткань называют непроизвольной мускулатурой.

Поперечнополосатая мышечная ткань.

Эта ткань образовалась из миотом, производных мезодермы. Структурной единицей этой ткани является поперечнополосатое мышечное волокно. Это цилиндрическое тело, является симпластом. Оно покрыто оболочкой — сарколемой, а цитоплазма называется – саркоплазмой, в которой находятся многочисленные ядра и миофибриллы. Миофибриллы образуют пучок непрерывных волоконец идущих от одного конца волокна до другого параллельно его оси. Каждая миофибрилла состоит из дисков имеющих разный химический состав и под микроскопом кажущихся темными и светлыми. Однородные диски всех миофибрилл совпадают, и поэтому мышечное волокно представляется поперечнополосатым. Миофибриллы являются сократительным аппаратом мышечного волокна.

Из поперечнополосатой мышечной ткани построена вся скелетная мускулатура. Мускулатура является произвольной, т.к. ее сокращение может возникать под влиянием нейронов двигательной зоны коры больших полушарий.

Мышечная ткань сердца.

Миокард — средний слой сердца — построен из поперечнополосатых мышечных клеток (кардиомиоцитов). Имеются два вида клеток: типичные сократительные клетки и атипичные сердечные миоциты, составляющие проводящую систему сердца.

Типичные мышечные клетки выполняют сократительную функцию; они прямоугольной формы, в центре находятся 1-2 ядра, миофибриллы расположены по периферии. Между соседними миоцитами имеются вставочные диски. С их помощью миоциты собираются в мышечные волокна, разделенные между собой тонковолокнистой соединительной тканью. Между соседними мышечными волокнами проходят соединительные волокна, которые обеспечивают сокращение миокарда, как единого целого.

Проводящая система сердца образована мышечными волокнами, состоящими из атипичных мышечных клеток. Они более крупные, чем сократительные, богаче саркоплазмой, но беднее миофибриллами, которые часто перекрещиваются. Ядра крупнее и не всегда находятся в центре. Волокна проводящей системы окружены густым сплетением нервных волокон.

6. Мышечные ткани: функции, виды

Мышечные ткани . Двигательные процессы в организме человека и животного обусловлены сокращением мышечной ткани, обладающей сократительными структурами. К мышечной ткани относят неисчерченную (гладкую) и исчерченную (поперечнополосатую) мышечную ткань, включающую скелетную и сердечную .

Сократительными элементами являются мышечные фибриллы — миофибриллы (мышечные нити). Клетки мышечной ткани — миоциты . Мышечные ткани обладают возбудимостью и сократимостью.


Мышечная ткань (Стерки П., 1984).

а — продольное сечение скелетной мышцы; б — сердечная исчерченная мышечная ткань; в — неисчерченная (гладкая) мышечная ткань; 1 — сарколемма; 2 — поперечная исчерченность; 3 — ядра; 4 — вставочные диски; 5 — гладкомышечные клетки

Три вида мышечной ткани:

Гладкая мышечная ткань — состоит из веретеновидных клеток с продольной исчерченностью.

Особенности: длительно сокращается; долго находится в сокращённом состоянии; сокращается непроизвольно.

Образует стенки сосудов и кишечника.

Гладкие мышечные волокна .

1 — протоплазма; 2 — ядро

Поперечнополосатая скелетно-мышечная ткань — клетки цилиндрической формы с поперечнополосатой исчерченностью.

Особенности: сокращаются быстро; долго находятся в сокращённом состоянии; на сокращение тратится не много энергии; сокращается не произвольно, а по нашему желанию.

Образует скелетные мышцы, мышцы языка, глотку и части пищевода.

Поперечнополосатая сердечная мышечная ткань .

Особенности: похожа на поперечнополосатую скелетно-мышечную, но есть вставочные диски и анастомозы; сокращается произвольно, не зависимо от нашего сознания; есть атипичные клетки, которые образуют проводящую систему.

Образует мышцы сердца.


Поперечнополосатые мышечные волокна . Видны ядра и поперечная исчерченность.

Левое волокно разорвано; в месите разрыва видна сарколемма

12Следующая ⇒

Мышечная ткань: виды, особенности строения, месторасположение в организме

Мышечные ткани (textus musculares) – это специализированные ткани, которые обеспечивают движение (перемещение в пространстве) организма в целом, а также его частей и внутренних органов. Сокращение мышечных клеток или волокон осуществляется с помощью миофиламентов и специальных органелл – миофибрилл и является результатом взаимодействия молекул сократительных белков.

Согласно морфункциональной классификации, мышечные ткани делят на две группы:

I – поперечнополосатая (исчерченная) мышечная ткань – содержит постоянно комплексы актиновых и миозиновых миофиламентов – миофибриллы и имеет поперечную исчерченность;

II – гладкая (неисчерченная) мышечная ткань – состоит из клеток, которые постоянно содержат только актиновые миофиламенты и не имеют поперечной исчерченности.

Поперечнополосатая мышечная ткань

Поперечнополосатая мышечная ткань подразделяется на скелетную и сердечную .

Обе эти разновидности развиваются из мезодермы .

Поперечнополосатая скелетная мышечная ткань. Эта ткань образует скелетные мышцы, мышцы рта, глотки, частично пищевода, мышцы промежности и др.

В разных отделах она имеет свои особенности. Обладает высокой скоростью сокращения и быстрой утомляемостью. Этот тип сократительной деятельности называется тетаническим . Поперечнополосатая скелетная мышечная ткань сокращается произвольно в ответ на импульсы, идущие от коры больших полушарий головного мозга. Однако часть мышц (межреберные, диафрагма и др.) имеет не только произвольный характер сокращения, но и сокращается без участия сознания под влиянием импульсов из дыхательного центра, а мышцы глотки и пищевода сокращаются непроизвольно.

Структурной единицей является поперечнополосатое мышечное волокно – симпласт, цилиндрической формы с округлыми или заостренными концами, которыми волокна прилежат друг к другу или вплетаются в соединительную ткань сухожилий и фасций.

Сократительным аппаратом их являются поперечнополосатые миофибриллы , которые образуют пучок волоконец.

Это белковые нити, расположенные вдоль волокна. Длина их совпадает с длиной мышечного волокна. Миофибриллы состоят из темных и светлых участков – дисков . Так как темные и светлые диски всех миофибрилл одного мышечного волокна располагаются на одном уровне, образуется поперечная исчерченность; поэтому мышечное волокно называется поперечнополосатым.Темные диски в поляризованном свете имеют двойное лучепреломление и называются анизотропными, или А-дисками; светлые диски не имеют двойного лучепреломления и называются изотропными, или I-дисками.

Разная светопреломляющая способность дисков обусловлена их различным строением.

Светлые (I) диски однородны по составу: образованы только параллельно лежащими тонкими нитями – актиновыми миофиламентами , состоящими преимущественно из белка актина , а также тропонина и тропомиозина . Темные (А) диски неоднородны: образованы как толстыми миозиновыми миофиламентами , состоящими из белка миозина , так и частично проникающими между ними тонкими актиновыми миофиламентами .

В середине каждого I–диска проходит темная линия, которая называется Z–линией, или телофрагмой .

К ней прикрепляется один конец актиновых нитей. Участок миофибриллы между двумя телофрагмами называется саркомером . Саркомер – структурно-функциональная единица миофибриллы. В центре A-диска можно выделить светлую полосу, или зону Н , содержащую только толстые нити. В середине ее выделяется тонкая темная линия М, или мезофрагма . Таким образом, каждый саркомер содержит один А-диск и две половины I-диска .

Поперечнополосатая сердечная мышечная ткань. Образует миокард сердца.

Содержит, как и скелетная, миофибриллы, состоящие из темных и светлых дисков. Состоит из клеток – кардиомиоцитов , связанных между собой вставочными дисками.

При этом образуются цепочки кардиомиоцитов – функциональные мышечные волокна, которые анастомозируют между собой (переходят одно в другое), образуя сеть. Такая система соединений обеспечивает сокращение миокарда как единого целого. Сокращение сердечной мышцы непроизвольное , регулируется вегетативной нервной системой.

Среди кардиомиоцитов различают:

  • сократительные (рабочие) кардиомиоциты – содержат меньше миофибрилл, чем скелетные мышечные волокна, но очень много митохондрий, поэтому сокращаются с меньшей силой, но долго не утомляются; с помощью вставочных дисков осуществляют механическую и электрическую связь кардиомиоцитов;
  • атипичные (проводящие) кардиомиоциты – образуют проводящую систему сердца для формирования и проведения импульсов к сократительным кардиомиоцитам;
  • секреторные кардиомиоциты – располагаются в предсердиях, способны вырабатывать гормоноподобный пептид – натрий-уретический фактор , снижающий артериальное давление.

Гладкая мышечная ткань

Развивается из мезенхимы, располагается в стенке трубчатых органов (кишечник, мочеточник, мочевой пузырь, кровеносные сосуды), а также радужке и цилиарном (ресничном) теле глаза и мышцах, поднимающих волосы в коже.

Гладкая мышечная ткань имеет клеточное строение (гладкий миоцит) и обладает сократительным аппаратом в виде гладких миофибрилл .

Она сокращается медленно и способна длительно находиться в состоянии сокращения, потребляя относительно малое количество энергии и не утомляясь. Такой тип сократительной деятельности называется тоническим . К гладкой мышечной ткани подходят вегетативные нервы, и в отличие от скелетной мышечной ткани она не подчиняется сознанию, хотя и находится под контролем коры больших полушарий головного мозга.

Гладкомышечная клетка имеет веретенообразную форму и заостренные концы.

В ней есть ядро, цитоплазма (саркоплазма), органеллы и оболочка (сарколемма). Сократительные миофибриллы располагаются по периферии клеток вдоль ее оси. Эти клетки плотно прилежат друг к другу. Опорным аппаратом в гладкой мышечной ткани являются тонкие коллагеновые и эластические волокна, расположенные вокруг клеток и связывающие их между собой.

12Следующая ⇒

Похожая информация:

Поиск на сайте:

Образование

Функции мышечных тканей, виды и структура

Организм всех животных, в том числе и человека, состоит из четырех типов тканей: эпителиальной, нервной, соединительной и мышечной. О последней и пойдет речь в данной статье.

Разновидности мышечной ткани

Она бывает трех видов:

  • поперечно-полосатая;
  • гладкая;
  • сердечная.

Функции мышечных тканей разных видов несколько отличаются.

Да и строение тоже.

Где находятся мышечные ткани в организме человека?

Мышечные ткани разных видов занимают различное местоположение в организме животных и человека.

Так, из сердечной мускулатуры, как понятно из названия, построено сердце.

Из поперечно-полосатой мышечной ткани образуются скелетные мускулы.

Гладкие мышцы выстилают изнутри полости органов, которым необходимо сокращаться. Это, к примеру, кишечник, мочевой пузырь, матка, желудок и т.д.

Структура мышечной ткани разных видов различается. О ней поговорим подробнее дальше.

Видео по теме

Как устроена мышечная ткань?

Она состоит из больших по размеру клеток — миоцитов.

Они также еще называются волокнами. Клетки мышечной ткани обладают несколькими ядрами и большим количеством митохондрий — органоидов, отвечающих за выработку энергии.

Кроме того, строение мышечной ткани человека и животных предусматривает наличие небольшого количества межклеточного вещества, содержащего коллаген, который придает мышцам эластичность.

Давайте рассмотрим строение и функции мышечных тканей разных видов по отдельности.

Структура и роль гладкой мышечной ткани

Данная ткань контролируется вегетативной нервной системой.

Поэтому человек не может сокращать сознательно мышцы, построенные из гладкой ткани.

Формируется она из мезенхимы. Это разновидность эмбриональной соединительной ткани.

Сокращается данная ткань намного менее активно и быстро, чем поперечно-полосатая.

Гладкая ткань построена из миоцитов веретеновидной формы с заостренными концами.

Длина данных клеток может составлять от 100 до 500 микрометров, а толщина — около 10 микрометров. Клетки данной ткани являются одноядерными. Ядро расположено в центре миоцита. Кроме того, хорошо развиты такие органоиды, как агранулярная ЭПС и митохондрии. Также в клетках гладкой мышечной ткани присутствует большое количество включений из гликогена, которые представляют собой запасы питательных веществ.

Элементом, который обеспечивает сокращение мышечной ткани данного вида, являются миофиламенты.

Они могут быть построены из двух сократительных белков: актина и миозина. Диаметр миофиламентов, которые состоят из миозина, составляет 17 нанометров, а тех, которые построены из актина — 7 нанометров. Существуют также промежуточные миофиламенты, диаметр которых составляет 10 нанометров. Ориентация миофибрилл продольная.

В состав мышечной ткани данного вида также входит межклеточное вещество из коллагена, которое обеспечивает связь между отдельными миоцитами.

Функции мышечных тканей этого вида:

  • Сфинктерная.

    Заключается в том, что из гладких тканей устроены круговые мышцы, регулирующие переход содержимого из одного органа в другой или из одной части органа в другую.

  • Эвакуаторная. Заключается в том, что гладкие мышцы помогают организму выводить ненужные вещества, а также принимают участие в процессе родов.
  • Создание просвета сосудов.
  • Формирование связочного аппарата. Благодаря ему многие органы, такие как, например, почки, удерживаются на своем месте.

Теперь давайте рассмотрим следующий вид мышечной ткани.

Поперечно-полосатая

Она регулируется соматической нервной системой.

Поэтому человек может сознательно регулировать работу мышц данного вида. Из поперечно-полосатой ткани формируется скелетная мускулатура.

Данная ткань состоит из волокон. Это клетки, которые обладают множеством ядер, расположенных ближе к плазматической мембране. Кроме того, в них находится большое количество гликогеновых включений. Хорошо развиты такие органоиды, как митохондрии.

Они находятся вблизи сократительных элементов клетки. Все остальные органеллы локализуются неподалеку от ядер и развиты слабо.

Структурами, благодаря которым поперечно-полосатая ткань сокращается, являются миофибриллы.

Их диаметр составляет от одного до двух микрометров. Миофибриллы занимают большую часть клетки и расположены в ее центре. Ориентация миофибрилл продольная. Они состоят из светлых и темных дисков, которые чередуются, что и создает поперечную «полосатость» ткани.

Функции мышечных тканей данного вида:

  • Обеспечивают перемещение тела в пространстве.
  • Отвечают за передвижение частей тела друг относительно друга.
  • Способны к поддержанию позы организма.
  • Участвуют в процессе регуляции температуры: чем активнее сокращаются мышцы, тем выше температура.

    При замерзании поперечно-полосатые мышцы могут начать сокращаться непроизвольно. Этим и объясняется дрожь в теле.

  • Выполняют защитную функцию. Особенно это касается мышц брюшного пресса, которые защищают многие внутренние органы от механических повреждений.
  • Выступают в роли депо воды и солей.

Сердечная мышечная ткань

Данная ткань похожа одновременно и на поперечно-полосатую, и на гладкую. Как и гладкая, она регулируется вегетативной нервной системой.

Однако сокращается она так же активно, как и поперечно-полосатая.

Состоит она из клеток, называющихся кардиомиоцитами.

Функции мышечной ткани данного вида:

  • Она всего одна: обеспечение передвижения крови по организму.

2. Поперечно-полосатая скелетная ткань

3. Гистогенез и регенерация мышечной ткани

4. Иннервация и кровоснабжение скелетных мышц

5. Сердечная поперечно-полосатая мышечная ткань

6. Гладкая мышечная ткань

7. Специальные гладкомышечные ткани

1. Свойством сократимости обладают практически все виды клеток, благодаря наличию в их цитоплазме сократительного аппарата, представленного сетью тонких микрофиламентов (5-7 нм), состоящих из сократительных белков - актина, миозина, тропомиозина и других. За счет взаимодействия названных белков микрофиламентов осуществляются сократительные процессы и обеспечивается движение в цитоплазме гиалоплазмы, органелл, вакуолей, образование псевдоподий и инвагинаций плазмолеммы, а также процессы фаго- и пиноцитоза, экзоцитоза, деления и перемещения клеток. Содержание сократительных элементов, а, следовательно, и сократительные процессы неодинаково выражены в разных типах клеток. Наиболее выражены сократительные структуры в клетках, основной функцией которых является сокращение. Такие клетки или их производные образуют мышечные ткани , которые обеспечивают сократительные процессы в полых внутренних органах и сосудах, перемещение частей тела относительно друг друга, поддержание позы и перемещение организма в пространстве. Помимо движения при сокращении выделяется большое количество тепла, а, следовательно, мышечные ткани участвуют в терморегуляции организма. Мышечные ткани неодинаковы по строению, источникам происхождения и иннервации, по функциональным особенностям. Наконец, следует отметить, что любая разновидность мышечной ткани, помимо сократительных элементов (мышечных клеток и мышечных волокон) включает в себя клеточные элементы и волокна рыхлой волокнистой соединительной ткани и сосуды, которые обеспечивают трофику мышечных элементов, осуществляют передачу усилий сокращения мышечных элементов на скелет. Однако, функционально ведущими элементами мышечных тканей являются мышечные клетки или мышечные волокна.

Классификация мышечных тканей

    Гладкая (неисчерченная)- мезенхимная;

    специальная - нейрального происхождения и эпидермального происхождения;

    Поперечно-полосатая (исчерченная)- скелетная;

    сердечная.

Как видно из представленной классификации мышечная ткань подразделяется по строению на две основные группы - гладкую и поперечно-полосатую. Каждая из двух групп в свою очередь подразделяется на разновидности, как по источникам происхождения, так и по строению и функциональным особенностям. Гладкая мышечная ткань , входящая в состав внутренних органов и сосудов, развивается из мезенхимы. К специальным мышечным тканям нейрального происхождения относятся гладкомышечные клетки радужной оболочки, эпидермального происхождения - миоэпителиальные клетки слюнных, слезных, потовых и молочных желез.

Поперечно-полосатая мышечная ткань подразделяется на скелетную и сердечную. Обе эти разновидности развиваются из мезодермы, но из разных ее частей: скелетная - из миотомов сомитов, сердечная - из висцерального листка спланхнотома.

Каждая разновидность мышечной ткани имеет свою структурно-функциональную единицу. Структурно-функциональной единицей гладкой мышечной ткани внутренних органов и радужной оболочки является гладкомышечная клетка - миоцит; специальной мышечной ткани эпидермального происхождения - корзинчатый миоэпителиоцит ; сердечной мышечной ткани - кардиомиоцит ; скелетной мышечной ткани - мышечное волокно.